CC BY-NC-ND 4.0 · Laryngorhinootologie 2019; 98(S 01): S82-S128
DOI: 10.1055/a-0755-2811
Referat
Eigentümer und Copyright ©Georg Thieme Verlag KG 2019

Hearing Implants in the Era of Digitization

Article in several languages: deutsch | English
Heidi Olze
1   Klinik für Hals-, Nasen- und Ohrenheilkunde CVK, Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde CCM, Charité Universitätsmedizin Berlin
,
Florian Cornelius Uecker
1   Klinik für Hals-, Nasen- und Ohrenheilkunde CVK, Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde CCM, Charité Universitätsmedizin Berlin
,
Sophia Marie Häußler
1   Klinik für Hals-, Nasen- und Ohrenheilkunde CVK, Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde CCM, Charité Universitätsmedizin Berlin
,
Steffen Knopke
1   Klinik für Hals-, Nasen- und Ohrenheilkunde CVK, Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde CCM, Charité Universitätsmedizin Berlin
,
Agnieszka J. Szczepek
1   Klinik für Hals-, Nasen- und Ohrenheilkunde CVK, Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde CCM, Charité Universitätsmedizin Berlin
,
Stefan Gräbel
1   Klinik für Hals-, Nasen- und Ohrenheilkunde CVK, Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde CCM, Charité Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
03 April 2019 (online)

Abstract

The last years’ developments could show that the rehabilitation with hearing implants is a field with the highest potential for development and innovation in otorhinolaryngology. New or extended indications were seen with developments of implants, new surgical techniques, and respective rehabilitation strategies.

With the background of limited resources, the increasing number of subjects suffering from hearing disorders, the extended indications and thus the increasing number of CI carriers as well as the need of life-long CI follow-up are one of the major challenges of the future. In order to cope with this situation, completely new strategies are required beside a close interdisciplinary cooperation and continuous development of the therapy. In this context, digitization of all these processes plays a key role.

This manuscript will describe and discuss the current developments from the perspective of a cochlea implant (CI) providing hospital. The contribution will elucidate manifold digital applications that may be implemented in all phases of CI provision, starting with patient information about the possibilities of hearing screening and preoperative evaluation up to life-long follow-up and clinical research.

The focus is mainly placed on specific applications that play a particular role in the development of digital progresses and structures in the context of cochlea implantation and that are crucial for understanding the further development.

The options of simplified fitting result for example from automated MAP creation (artificial intelligence); remote care networks (telemedicine, apps) foster the active contribution of the patients themselves and allow completely new types of location-independent healthcare (automated technical implant control, individual settings, upgrades). Central databases may create backups of the current MAP (for example in cases of repair), and document technical data and the hearing performance. Some applications described here, are already implemented in the routine, others are currently being developed.

Understanding the possibilities of digitization and their implementation in the context of hearing rehabilitation with hearing implants as well as the recognition of the enormous potential for effective, time-efficient structures is essential in order to use this potential. We as ENT specialists are important protagonists in the healthcare system and beside our high specific expertise we have to meet the requirements of our qualification with regard to digital applications so that we might actively contribute to the success of this process.

 
  • Literature

  • 1 WHO. Deafness and hearing loss. In; 2018
  • 2 Lin FR, Metter EJ, O’Brien RJ. et al. Hearing Loss and Incident Dementia. Archives of Neurology 2011; 68: 214-220
  • 3 Lin FR, Ferrucci L, An Y. et al. Association of hearing impairment with brain volume changes in older adults. NeuroImage 2014; 90
  • 4 Lin FR. Hearing loss and cognition among older adults in the United States. J Gerontol A Biol Sci Med Sci 2011; 66: 1131-1136
  • 5 Knopke S, Gräbel S, Förster-Ruhrmann U et al. Impact of cochlear implantation on quality of life and mental comorbidity in patients aged 80 years. Laryngoscope 2016; 126
  • 6 Olze H, Gräbel S, Förster U. et al. Elderly patients benefit from cochlear implantation regarding auditory rehabilitation, quality of life, tinnitus, and stress. The Laryngoscope 2012; 122: 196-203
  • 7 Olze H, Knopke S, Gräbel S et al. Rapid Positive Influence of Cochlear Implantation on the Quality of Life in Adults 70 Years and Older. Audiology and Neurotology 2016; 21
  • 8 Olze H, Gräbel S, Haupt H. et al. Extra benefit of a second cochlear implant with respect to health-related quality of life and tinnitus. Otology & neurotology: official publication of the American Otological. Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2012; 33: 1169-1175
  • 9 Knopke S, Szczepek AJ, Haussler SM. et al. Cochlear Implantation of Bilaterally Deafened Patients with Tinnitus Induces Sustained Decrease of Tinnitus-Related Distress. Front Neurol 2017; 8: 158
  • 10 Hirschfelder A, Gräbel S, Olze H. The impact of cochlear implantation on quality of life: the role of audiologic performance and variables. Otolaryngology – head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 2008; 138: 357-362
  • 11 Olze H, Szczepek AJ, Haupt H. et al. Cochlear implantation has a positive influence on quality of life, tinnitus, and psychological comorbidity. The Laryngoscope 2011; 121: 2220-2227
  • 12 Olze H, Szczepek AJ, Haupt H. et al. The impact of cochlear implantation on tinnitus, stress and quality of life in postlingually deafened patients. Audiol Neurootol 2012; 17: 2-11
  • 13 DGHNO Pd. Weißbuch Cochlea-Implantat(CI)-Versorgung.
  • 14 Blamey PJ, Maat B, Başkent D. et al. A Retrospective Multicenter Study Comparing Speech Perception Outcomes for Bilateral Implantation and Bimodal Rehabilitation. Ear Hearing 2015; 36: 408-416
  • 15 Lenarz T. Cochlear Implant – State of the Art. Laryngorhinootologie 2017; 96: S123-S151
  • 16 Knopke S, Szczepek AJ, Häussler SM. et al. Cochlear Implantation of Bilaterally Deafened Patients with Tinnitus Induces Sustained Decrease of Tinnitus-Related Distress. Frontiers in Neurology 2017; 8: 158-158
  • 17 Disorders NIoDaOC. Cochlear Implants. In; 2017
  • 18 Bundesamt S. Bevölkerung und Erwerbstätigkeit. 2015, DOI: 1–69
  • 19 Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde K-uH-CeV, Bonn. Cochlea-Implantat Versorgung und zentral-auditorische Implantate. In; 2012
  • 20 Knopke S, Olze H. Hörrehabilitation mithilfe von Cochleaimplantaten und kognitive Fähigkeiten. HNO 2017; DOI: 10.1007/s00106-017-0423-z.
  • 21 Mathers C, Smith A, Concha M. Global burden of hearing loss in the year 2000.
  • 22 Sohn W, Jorgenshaus W. Hals-Nasen-Ohren-Erkrankungen-Schwerhorigkeit in Deutschland-Reprasentative Horscreening-Untersuchung bei 2000 Probanden in 11 Allgemeinpraxen. ZFA-Zeitschrift fur Allgemeinmedizin-Ausgabe A 2001; 77: 143-147
  • 23 Teschner M, Polite C, Lenarz T. et al. Cochlear implantation in different health-care systems: disparities between Germany and the United States. Otology & Neurotology 2013; 34: 66-74
  • 24 Hoppe U, Hast A, Hocke T. Audiometry-based screening procedure for cochlear implant candidacy. Otology & Neurotology 2015; 36: 1001-1005
  • 25 Sorkin DL. Cochlear implantation in the world's largest medical device market: utilization and awareness of cochlear implants in the United States. Cochlear implants international 2013; 14: S12-S14
  • 26 Bionics A. http://www.AdvancedBionics.de In; 2018
  • 27 Cochlear www.cochlear.de In; 2018
  • 28 Medel www.medel.com In; 2018
  • 29 Oticon www.oticonmedical.com In; 2018
  • 30 Aiello CP, Ferrari DV. Teleaudiology: efficacy assessment of an online social network as a support tool for parents of children candidates for cochlear implant. In, CoDAS: SciELO Brasil 2015; 411-418
  • 31 Institute I http://https://idainstitute.com/ In; 2018
  • 32 Paglialonga A, Nielsen AC, Ingo E. et al. eHealth and the hearing aid adult patient journey: a state-of-the-art review. Biomedical engineering online 2018; 17: 101
  • 33 Uecker FC, Szczepek AJ, Olze H. Paediatric bilateral cochlear implantation: simultaneous versus sequential surgery. Otol Neurotol. 2018; in press
  • 34 Hinderink JB, Krabbe PF, Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryng Head Neck 2000; 123: 756-765
  • 35 Holube I, Kollmeier B. ModifIkation eines Fragebogens zur Erlassung des subjektiven Hör-verDlögens und dessen Beziehung zur Sprachverständlichkeit in Ruhe und unter Störgeräuschen. 1994
  • 36 Nasreddine ZS, Phillips NA, Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society 2005; 53: 695-699
  • 37 Smits C, Theo Goverts S, Festen JM. The digits-in-noise test: assessing auditory speech recognition abilities in noise. The Journal of the Acoustical Society of America 2013; 133: 1693-1706
  • 38 Hoppe U, Hocke T, Hast A. et al. Langzeitergebnisse eines Screeningverfahrens für erwachsene Cochlea-Implantat-Kandidaten. Laryngo-Rhino-Otologie 2017; 96: 234-238
  • 39 Bright T, Pallawela D. Validated smartphone-based apps for ear and hearing assessments: a review. JMIR rehabilitation and assistive technologies 2016; 3
  • 40 Nast DR, Speer WS, Le Prell CG. Sound level measurements using smartphone “apps”: Useful or inaccurate?. Noise and Health 2014; 16: 251
  • 41 Bruggemann P, Szczepek AJ, Klee K. et al. In Patients Undergoing Cochlear Implantation, Psychological Burden Affects Tinnitus and the Overall Outcome of Auditory Rehabilitation. Front Hum Neurosci 2017; 11: 226
  • 42 Hinderink JB, Krabbe PF. Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryngology – head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 2000; 123: 756-765
  • 43 Sweetow RW. Screening for cognitive disorders in older adults in the audiology clinic. Audiology Today 2015; 27: 38-43
  • 44 Morris MA, Saboury B, Burkett B. et al. Reinventing radiology: big data and the future of medical imaging. Journal of thoracic imaging 2018; 33: 4-16
  • 45 Brink JA, Arenson RL, Grist TM. et al. Bits and bytes: the future of radiology lies in informatics and information technology. European radiology 2017; 27: 3647-3651
  • 46 Radiology ESo. Summary of the proceedings of the international forum 2016:“Imaging referral guidelines and clinical decision support – how can radiologists implement imaging referral guidelines in clinical routine?”. Insights into imaging 2017; 8: 1-9
  • 47 Kansagra AP, John-Paul JY, Chatterjee AR. et al. Big data and the future of radiology informatics. Academic radiology 2016; 23: 30-42
  • 48 Gerber N, Bell B, Gavaghan K. et al. Surgical planning tool for robotically assisted hearing aid implantation. International journal of computer assisted radiology and surgery 2014; 9: 11-20
  • 49 Lu P, Barazzetti L, Chandran V et al. Facial nerve image enhancement from CBCT using supervised learning technique. In, Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE: IEEE; 2015: 2964–2967
  • 50 Mellor JC, Stone MA, Keane J. Application of data mining to “big data” acquired in audiology: Principles and potential. Trends in hearing 2018; 22: 2331216518776817
  • 51 Cox S, Oakes M, Wermter S. et al. AudioMine: Medical Data Mining in Heterogeneous Audiology Records. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering 2007; 1: 141-144
  • 52 Czaplik M, Voigt V, Kenngott H. et al. Why OR. NET? Requirements and perspectives from a medical user’s, clinical operator’s and device manufacturer’s points of view. Biomedical Engineering/Biomedizinische Technik 2018; 63: 5-10
  • 53 Kasparick M, Schmitz M, Andersen B. et al. OR. NET: a service-oriented architecture for safe and dynamic medical device interoperability. Biomedical Engineering/Biomedizinische Technik 2018; 63: 11-30
  • 54 Benzko J, Krause L, Janß A. et al. Modular user interface design for integrated surgical workplaces. Biomedical Engineering/Biomedizinische Technik 2016; 61: 183-197
  • 55 Klenzner T, Ngan CC, Knapp FB. et al. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. European archives of oto-rhino-laryngology 2009; 266: 955
  • 56 Caversaccio M, Gavaghan K, Wimmer W. et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Oto-Laryngol 2017; 137: 447-454
  • 57 Cosetti MK, Troob SH, Latzman JM. et al. An evidence-based algorithm for intraoperative monitoring during cochlear implantation. Otology & Neurotology 2012; 33: 169-176
  • 58 Viccaro M, Covelli E, De Seta E. et al. The importance of intra-operative imaging during cochlear implant surgery. Cochlear implants international 2009; 10: 198-202
  • 59 Vogl T, Tawfik A, Emam A. et al. Pre-, intra-and post-operative imaging of cochlear implants. In, RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren: © Georg Thieme Verlag KG 2015; 980-989
  • 60 Carelsen B, Grolman W, Tange R. et al. Cochlear implant electrode array insertion monitoring with intra-operative 3D rotational X-ray. Clinical Otolaryngology 2007; 32: 46-50
  • 61 Aschendorff A. Imaging in cochlear implant patients. GMS current topics in otorhinolaryngology, head and neck surgery 2011; 10
  • 62 Bloom JD, Rizzi MD, Germiller JA. Real-time intraoperative computed tomography to assist cochlear implant placement in the malformed inner ear. Otology & Neurotology 2009; 30: 23-26
  • 63 Yuan Y-Y, Song Y-S, Chai C-M. et al. Intraoperative CT-guided cochlear implantation in congenital ear deformity. Acta Oto-Laryngol 2012; 132: 951-958
  • 64 Stelter K, Ledderose G, Hempel JM. et al. Image guided navigation by intraoperative CT scan for cochlear implantation. Computer Aided Surgery 2012; 17: 153-160
  • 65 Shapiro WH, Huang T, Shaw T. et al. Remote intraoperative monitoring during cochlear implant surgery is feasible and efficient. Otology & Neurotology 2008; 29: 495-498
  • 66 Yanov Y, Kuzovkov V, Sugarova S et al. Successful application and timing of a remote network for intraoperative objective measurements during cochlear implantation surgery. International journal of audiology 2018 DOI: 1–7
  • 67 Botros A, van Dijk B, Killian M. AutoNRT™: An automated system that measures ECAP thresholds with the Nucleus® Freedom™ cochlear implant via machine intelligence. Artificial Intelligence in Medicine 2007; 40: 15-28
  • 68 van Dijk B, Botros AM, Battmer R-D. et al. Clinical results of AutoNRT,™ a completely automatic ECAP recording system for cochlear implants. Ear Hearing 2007; 28: 558-570
  • 69 Tavartkiladze G, Bakhshinyan V, Irwin C. Evaluation of new technology for intraoperative evoked compound action potential threshold measurements. International journal of audiology 2015; 54: 347-352
  • 70 Grolman W, Maat A, Verdam F. et al. Spread of excitation measurements for the detection of electrode array foldovers: a prospective study comparing 3-dimensional rotational x-ray and intraoperative spread of excitation measurements. Otology & Neurotology 2009; 30: 27-33
  • 71 Lassaletta L, Polak M, Huesers J. et al. Usefulness of Electrical Auditory Brainstem Responses to Assess the Functionality of the Cochlear Nerve Using an Intracochlear Test Electrode. Otology & Neurotology 2017; 38: e413-e420
  • 72 „vom“, DOI, 2018, 34
  • 73 Smoorenburg GF, Willeboer C, van Dijk JE. Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurootol 2002; 7: 335-347
  • 74 Battmer R-D, Borel S, Brendel M. et al. Assessment of ‘Fitting to Outcomes Expert’ FOX ™ with new cochlear implant users in a multi-centre study. Cochlear Implants International 2015; 16: 100-109
  • 75 Meeuws M, Pascoal D, Bermejo I. et al. Computer-assisted CI fitting: Is the learning capacity of the intelligent agent FOX beneficial for speech understanding?. Cochlear Implants Int 2017; 18: 198-206
  • 76 Vaerenberg B, Govaerts PJ, de Ceulaer G. et al. Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users. Int J Audiol 2011; 50: 50-58
  • 77 Botros A, Banna R, Maruthurkkara S. The next generation of Nucleus (R) fitting: a multiplatform approach towards universal cochlear implant management. Int J Audiol 2013; 52: 485-494
  • 78 Lenarz T. Cochlear implant – state of the art. GMS Curr Top Otorhinolaryngol Head Neck Surg 2017; 16: Doc04
  • 79 Eikelboom RH, Jayakody DMP, Swanepoel DW. et al. Validation of remote mapping of cochlear implants. J Telemed Telecare 2014; 20: 171-177
  • 80 Kuzovkov V, Yanov Y, Levin S. et al. Remote programming of MED-EL cochlear implants: users' and professionals' evaluation of the remote programming experience. Acta Oto-Laryngologica 2014; 134: 709-716
  • 81 Wasowski A, Skarzynski PH, Lorens A. et al. Remote fitting of cochlear implant system. Cochlear implants international 2010; 11 (Suppl. 01) 489-492
  • 82 Frago LM, Canon S, de la Rosa EJ. et al. Programmed cell death in the developing inner ear is balanced by nerve growth factor and insulin-like growth factor I. J Cell Sci 2003; 116: 475-486
  • 83 Bright T, Pallawela D. Validated Smartphone-Based Apps for Ear and Hearing Assessments: A Review. JMIR Rehabilitation and Assistive Technologies 2016; 3: e13-e13
  • 84 Bionics A. Die neue bimodale Naída Hörlösung.
  • 85 Bionics A. Die Naída Link CROS Lösung.
  • 86 Cullington H, Kitterick P, Weal M. et al. Feasibility of personalised remote long-term follow-up of people with cochlear implants: a randomised controlled trial. BMJ open 2018; 8: e019640
  • 87 Infrastruktur BfVud. http://https://www.bmvi.de/DE/Themen/Digitales/Breitbandausbau/Breitbandatlas-Karte/start.html In; 2018
  • 88 FAZ. http://www.faz.net/aktuell/wirtschaft/diginomics/so-weit-istdeutschland-mit-dem-breitbandausbau-15672719.html In; 2018
  • 89 Saunders GH, Chisolm TH. Connected audiological rehabilitation: 21st century innovations. J Am Acad Audiol 2015; 26: 768-776
  • 90 Bush ML, Thompson R, Irungu C. et al. The role of telemedicine in auditory rehabilitation: a systematic review. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2016; 37: 1466
  • 91 Pichora-Fuller MK, Levitt H. Speech comprehension training and auditory and cognitive processing in older adults. American Journal of Audiology 2012; 21: 351-357
  • 92 Krüger-Brand HE. Mobile Medizintechnik: Telemedizin für die Nachsorge. Dtsch Arztebl International 2013; 110: 2014-2015
  • 93 Cullington HE, Agyemang-Prempeh A. Person-centred cochlear implant care: Assessing the need for clinic intervention in adults with cochlear implants using a dual approach of an online speech recognition test and a questionnaire. Cochlear implants international 2017; 18: 76-88
  • 94 Zenner H, Delb W, Kröner-Herwig B. et al. On the interdisciplinary S3 guidelines for the treatment of chronic idiopathic tinnitus. Hno 2015; 63: 419-427
  • 95 Folmer RL, Griest SE, Meikle MB. et al. Tinnitus severity, loudness, and depression. Otolaryngology – Head and Neck Surgery 1999; 121: 48-51
  • 96 Kreuzer PM, Vielsmeier V, Langguth B. Chronic tinnitus: an interdisciplinary challenge. Deutsches Ärzteblatt International 2013; 110: 278
  • 97 Mazurek B, Szczepek AJ, Bruggemann P. Tinnitus – Clinical Symptoms and Therapy. Laryngorhinootologie 2017; 96: 47-59
  • 98 Henry JA, Dennis KC, Schechter MA. General review of tinnitus: prevalence, mechanisms, effects, and management. Journal of speech, language, and hearing research 2005; 48: 1204-1235
  • 99 Baguley DM, Atlas MD. Cochlear implants and tinnitus. Progress in brain research 2007; 166: 347-355
  • 100 Kompis M, Pelizzone M, Dillier N. et al. Tinnitus before and 6 months after cochlear implantation. Audiology and Neurotology 2012; 17: 161-168
  • 101 Miyamoto RT, Bichey BG. Cochlear implantation for tinnitus suppression. Otolaryngologic Clinics of North America 2003; 36: 345-352
  • 102 Pan T, Tyler RS, Ji H. et al. Changes in the tinnitus handicap questionnaire after cochlear implantation. American journal of audiology 2009; 18: 144-151
  • 103 Quaranta N, Fernandez-Vega S, D'Elia C. et al. The effect of unilateral multichannel cochlear implant on bilaterally perceived tinnitus. Acta Oto-Laryngol 2008; 128: 159-163
  • 104 Quaranta N, Wagstaff S, Baguley DM. Tinnitus and cochlear implantation. International journal of audiology 2004; 43: 245-251
  • 105 Olze H. Cochlear implants and tinnitus. HNO 2015; 63: 291-297