Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000017.xml
Exp Clin Endocrinol Diabetes 2020; 128(06/07): 355-357
DOI: 10.1055/a-1163-7355
DOI: 10.1055/a-1163-7355
Editorial
Seven Years of Active Thyroid Hormone Research in Germany: Thyroid Hormone Action beyond Classical Concepts
Publication History
Received: 16 April 2020
Received: 16 April 2020
Accepted: 22 April 2020
Article published online:
16 June 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 Friesema EC, Ganguly S, Abdalla A. et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003; 278: 40128-40135. DOI: 10.1074/jbc.M300909200.
- 2 Scanlan TS, Suchland KL, Hart ME. et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 2004; 10: 638-642. DOI: 10.1038/nm1051.
- 3 Kerp H, Gassen J, Fuhrer D. Age and sex influence thyroid hormone effects in target tissues with organ-specific responses. Exp Clin Endocrinol Diabetes. 2020 DOI: 10.1055/a-1083-6272
- 4 Friedrich N, Pietzner M, Engelmann B. et al. Screening for new markers to assess thyroid hormone action by OMICs analysis of human sample. Experimental and Clinical Endocrinology and Diabetes 2020; 128: 479-487
- 5 Homut GL, Schanze J, Golchert N. et al. Endocrine, metabolic and pharmacological effects of thyronamines (TAM), thyroacetic acids (TA) and thyroid hormone metabolites (THM) – Evidence from in vitro, cellular, experimental animal and human studies. Experimental and Clinical Endocrinology and Diabetes 2020; 128: 401-413
- 6 Köhrle JR. K. Mass spectrometry-based determination of thyroid hormones and their metabolites in endocrine diagnostics and biomedical research – implications for human serum diagnostics. Experimental and Clinical Endocrinology and Diabetes 2020; 128: 358-374
- 7 Muller-Fielitz H, Schwaninger M. The role of tanycytes in the hypothalamus-pituitary-thyroid axis and the possibilities for their genetic manipulation. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1065-1855
- 8 Braun D, Schweizer U. Thyroid hormone transport and transporters. Vitam Horm 2018; 106: 19-44. DOI: 10.1016/bs.vh.2017.04.005
- 9 Krause G, Hinz KM. Molecular mechanisms of thyroid hormone transport by l-type amino acid transporter. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1032-8369
- 10 Salveridou E, Mayerl S, Sundaram SM. et al. Tissue-specific function of thyroid hormone transporters: New insights from mouse models. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1032-8328
- 11 Steegborn C, Schweizer U. Structure and Mechanism of iodothyronine deiodinases – what we know, what we don't know, and what would be nice to know. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1022-9916
- 12 Hönes S, Geist D, Moeller LC. Noncanonical action of thyroid hormone receptors α and β. Experimental and Clinical Endocrinology and Diabetes 2020; 128: 383-387
- 13 Mittag J. More Than Fever – Novel concepts in the regulation of body temperature by thyroid hormones. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1014-2510
- 14 Gobel A, Gottlich M, Reinwald J. et al. The influence of thyroid hormones on brain structure and function in humans. Exp Clin Endocrinol Diabetes. 2020 DOI: 10.1055/a-1101-9090
- 15 Krause K.. Novel aspects of white adipose tissue browning by thyroid hormones. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1020-5354
- 16 Brix K, Szumska J, Weber J. et al. Auto-regulation of the thyroid gland beyond classical pathways. Exp Clin Endocrinol Diabetes. 2020 DOI: 10.1055/a-1080-2969
- 17 Lademann F, Tsourdi E, Hofbauer LC. et al. Thyroid hormone actions and bone remodeling – the role of the wnt signaling pathway. Exp Clin Endocrinol Diabetes. 2020 DOI: 10.1055/a-1088-1215
- 18 Schmohl KA, Muller AM, Nelson PJ. et al. Thyroid hormone effects on mesenchymal stem cell biology in the tumour microenvironment. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1022-9874
- 19 Kube I, Zwanziger D.. Thyroid dysfunction and cholesterol gallstone disease. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1033-7273
- 20 Hoefig CS, Zucchi R, Kohrle J.. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid 2016; 26: 1656-1673. DOI: 10.1089/thy.2016.0178
- 21 Kohrle J, Biebermann H.. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40: 602-630 DOI: 10.1210/er.2018-00182
- 22 Biebermann H, Kleinau G.. 3-Iodothyronamine Induces Diverse Signaling Effects at Different Aminergic and Non-Aminergic G-Protein Coupled Receptors. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1022-1554
- 23 Coster M, Biebermann H, Schoneberg T. et al. Evolutionary Conservation of 3-Iodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1. Eur Thyroid J 2015; 4: 9-20. DOI: 10.1159/000430839.
- 24 Walcher L, Budde C, Bohm A. et al. TRPM8 Activation via 3-Iodothyronamine Blunts VEGF-Induced Transactivation of TRPV1 in Human Uveal Melanoma Cells. Front Pharmacol 2018; 9: 1234. DOI: 10.3389/fphar.2018.01234.
- 25 Wirth EK, Meyer F.. Neuronal effects of thyroid hormone metabolites. Mol Cell Endocrinol 2017; 458: 136-142 DOI: 10.1016/j.mce.2017.01.007
- 26 Nock S, Hofig C, Harder L. et al. Unraveling the molecular basis for successful thyroid hormone replacement therapy: The need for new thyroid tissue- and pathway-specific biomarkers. Exp Clin Endocrinol Diabetes. 2019 DOI: 10.1055/a-1012-8484