Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(13): 1365-1370
DOI: 10.1055/a-1409-1906
DOI: 10.1055/a-1409-1906
cluster
Perspectives on Organoheteroatom and Organometallic Chemistry
Iridium(III)-Catalyzed C−H Functionalization of Triarylphosphine Oxides with Diazo Dicarbonyl Compounds: Synthesis of α-Aryl 1,3-Dicarbonyl Derivatives
NSFC (Nos. 21532001) and the Open Fund of the Key Laboratory of Functional Molecular Engineering of Guangdong Province (2016kf04).
Abstract
A novel (pentamethylcyclopenta-1,3-dienyl)iridium(III)-catalyzed direct C–H functionalization of triarylphosphine oxides with diazo dicarbonyl compounds through carbene insertion has been developed. This strategy provides a simple and efficient route to the construction of α-arylated 1,3-dicarbonyl compounds, which are important building blocks in pharmaceutical chemistry.
Key words
triarylphosphine oxides - iridium catalysis - C–H bond activation - aryl dicarbonyl compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1409-1906.
- Supporting Information
- CIF File
Publication History
Received: 28 January 2021
Accepted after revision: 05 March 2021
Accepted Manuscript online:
05 March 2021
Article published online:
01 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Carmine AA, Brogden RN, Heel RC, Romankiewicz JA, Speight TM, Avery GS. Drugs 1983; 26: 279
- 1b de Louvois J, James J, Mulhall A. Arch. Dis. Child. 1984; 59: 346
- 1c Go MK, Chow JY, Cheung VW. N, Lim YP, Yew WS. Biochemistry 2012; 51: 4568
- 1d Koryakina I, McArthur J, Randall S, Draelos MM, Musiol EM, Muddiman DC, Weber T, Williams GJ. ACS Chem. Biol. 2013; 8: 200
- 2a Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
- 2b Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
- 2c Huang XL, Maulide N. J. Am. Chem. Soc. 2011; 133: 8510
- 2d Mohanan K, Coquerel Y, Rodriguez J. Org. Lett. 2012; 14: 4686
- 2e Pietruszka J, Wang C. Green Chem. 2012; 14: 2402
- 2f Das P, Shibata N. J. Org. Chem. 2017; 82: 11915
- 2g Taneja N, Peddinti RK. Chem. Commun. 2018; 54: 11423
- 2h Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2020; 10: 955
- 3a Fox JM, Huang XH, Chieffi A, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 1360
- 3b Beare NA, Hartwig JF. J. Org. Chem. 2002; 67: 541
- 3c Zeevaart JG, Parkinson CJ, de Koning CB. Tetrahedron Lett. 2004; 45: 4261
- 3d Kosobokov MD, Titanyuk ID, Beletskaya IP. Tetrahedron Lett. 2014; 55: 6791
- 3e Ye F, Wang CP, Zhang Y, Wang JB. Angew. Chem. Int. Ed. 2014; 53: 11625
- 3f Gutiérrez-Bonet Á, Juliá-Hernández F, de Luis B, Martin R. J. Am. Chem. Soc. 2016; 138: 6384
- 3g Hennessy EJ, Buchwald SL. Org. Lett. 2002; 4: 269
- 3h Xie X, Cai G, Ma D. Org. Lett. 2005; 7: 4693
- 3i Xie X, Chen Y, Ma D. J. Am. Chem. Soc. 2006; 128: 16050
- 3j Yip SF, Cheung HY, Zhou ZY, Kwong FY. Org. Lett. 2007; 9: 3469
- 3k Babu SG, Sakthivel R, Dharmaraj N, Karvembu R. Tetrahedron Lett. 2014; 55: 6873
- 3l Liu X.-G, Li Z.-H, Xie J.-W, Liu P, Zhang J, Dai B. Tetrahedron 2016; 72: 653
- 3m Zhan F, Zhang W, Zhao H. Synthesis 2020; 52: 1007
- 4a Dudognon Y, Presset M, Rodriguez J, Coquerel Y, Bugaut X, Constantieux T. Chem. Commun. 2016; 52: 3010
- 4b Zhang Z, Tang M, Zang L, Zou L.-H, Li J. Tetrahedron Lett. 2016; 57: 5681
- 4c Satumov ET, Medvedev JJ, Nilov DI, Sandzhieva MA, Boyarskaya IA, Nikolaev VA, Vasilyev AV. Tetrahedron 2016; 72: 4835
- 4d Hu X, Chen X, Shao Y, Xie H, Deng Y, Ke Z, Jiang H, Zeng W. ACS Catal. 2018; 8: 1308
- 4e Hu X, Chen F, Deng Y, Jiang H, Zeng W. Org. Lett. 2018; 20: 6140
- 4f Meng J, Ding W.-W, Han Z.-Y. Org. Lett. 2019; 21: 9801
- 5a Hu F, Xia Y, Ma C, Zhang Y, Wang J. Chem. Commun. 2015; 51: 7986
- 5b Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
- 5c Marinozzi M, Pertusati F, Serpi M. Chem. Rev. 2016; 116: 13991
- 5d Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 5e Wang Z, Xie P, Xia Y. Chin. Chem. Lett. 2018; 29: 47
- 5f Han X.-L, Lin P.-P, Li QJ. Chin. Chem. Lett. 2019; 30: 1495
- 6a Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 6b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 6c Li X, Ouyang W, Nie J, Ji S, Chen Q, Huo Y. ChemCatChem 2020; 12: 2358
- 6d Zhao D, Kim JH, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 4508
- 6e Wei M.-E, Wang L.-H, Li Y.-D, Cui X.-L. Chin. Chem. Lett. 2015; 26: 1336
- 6f Kim JH, Greßies S, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 5577
- 6g Li Y, Qi Z, Wang H, Yang X, Li X. Angew. Chem. Int. Ed. 2016; 55: 11877
- 6h Wu Y, Chen Z, Yang Y, Zhu W, Zhou B. J. Am. Chem. Soc. 2018; 140: 42
- 6i Chen X, Wang M, Zhang X, Fan X. Org. Lett. 2019; 21: 2541
- 6j Ng F.-N, Chan C.-M, Li JB, Sun MZ, Lu Y.-S, Zhou ZY, Huang BL, Yu W.-Y. Org. Biomol. Chem. 2019; 17: 1191
- 6k Song X, Han X, Zhang R, Liu H, Wang J. Molecules. 2019; 24: 1884
- 6l Guo S, Sun L, Li X, Zhang X, Fan X. Adv. Synth. Catal. 2020; 362: 913
- 6m Yuan Y, Guo X, Zhang X, Li B, Huang Q. Org. Chem. Front. 2020; 7: 3146
- 6n Wang X, Zhang J, He Y, Chen D, Wang C, Yang F, Wang W, Ma Y, Szostak M. Org. Lett. 2020; 22: 5187
- 7a Ma Y.-N, Yang S.-D. Chem. Rec. 2016; 16: 977
- 7b Cui Y.-M, Lin Y, Xu L.-W. Coord. Chem. Rev. 2017; 330: 37
- 7c Ma Y.-N, Li S.-X, Yang S.-D. Acc. Chem. Res. 2017; 50: 1480
- 7d Zhang Z, Dixneuf PH, Soule J.-F. Chem. Commun. 2018; 54: 7265
- 7e Zhou C.-N, Zheng Z.-A, Chang G, Xiao Y.-C, Shen Y.-H, Lia G, Zhang Y.-M, Peng W.-M, Wang L, Xiao B. Curr. Org. Chem. 2019; 23: 103
- 8 Liu Z, Wu J.-Q, Yang S.-D. Org. Lett. 2017; 19: 5434
- 9 Jang Y.-S, Woźniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
- 10 Lou Q.-X, Niu Y, Qi Z.-C, Yang S.-D. J. Org. Chem. 2020; 85: 14527
-
11 Further details of the base optimization, see the Supporting Information.
-
12
2-[2-(Diphenylphosphoryl)phenyl]-4,4-dimethyl-1-phenylpentane-1,3-dione (3): Typical ProcedureUnder an Ar atmosphere, Ph3P=O (1; 0.4 mmol, 2.0 equiv), [Cp*IrCl2]2 (2.0 mg, 1.25 mol%), AgOTf (2.6 mg, 10 mol%), and pivalic acid (10.2 mg, 0.1 mmol, 0.5 equiv) were added to an oven-dried reaction tube containing a magnetic stirrer bar. The tube was sealed, DCE (0.3 mL) was added from a syringe, and the mixture was stirred at 50 °C (oil bath) for 20 min. A solution of the diazo 1,3-dicarbonyl compound 2a (0.2 mmol, 1.0 equiv) in DCE (1.0 mL) was then added over 4 h by using a peristaltic pump. The mixture was stirred for a further 12 h then cooled to r.t. The solvent was removed in vacuo, and the residue was purified by chromatography [silica gel, PE–EtOAc (3:1)] to give a white solid; yield: 86.4 mg (90%).1H NMR (400 MHz, CDCl3): δ = 8.12 (m, 3 H), 7.58–7.36 (m, 11 H), 7.31 (m, 4 H), 7.24–7.18 (m, 1 H), 7.05 (dd, J = 14.4, 7.4 Hz, 1 H), 1.03 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 209.8, 195.0, 135.9, 134.2 (d, J = 13.1 Hz), 133.1, 132.7 (d, J = 9.7 Hz), 132.3, 132.2 (d, J = 2.8 Hz), 132.2, 132.1, 131.9 (d, J = 2.5 Hz), 131.8, 129.3, 128.9 (d, J = 100.8 Hz), 128.6 (dd, J = 13.6, 12.2 Hz), 128.4, 126.9 (d, J = 12.8 Hz), 58.8 (d, J = 3.6 Hz), 45.6, 27.0. 31P NMR (162 MHz, CDCl3): δ = 34.3. HRMS (ESI): m/z [M + Na]+ calcd for C31H29NaO3P: 503.1747; found: 503.1747.
-
13 CCDC 20127547 contains the supplementary crystallographic data for compound 3. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
-
14 For details, see the Supporting Information.
- 15 Kitahara K, Mizutani H, Iwasa S, Shibatomi K. Synthesis 2019; 51: 4385
- 16 Roy O, Riahi A, Hénin F, Muzart J. Eur. J. Org. Chem. 2002; 3986
- 17 Zeng L, Lai Z, Cui S. J. Org. Chem. 2018; 83: 14834
For selected examples, see:
For selected examples of Pd-catalyzed reactions, see:
For Cu-catalyzed reactions, see:
For selected reviews, see:
For selected recent examples, see: