Synthesis 2021; 53(16): 2897-2902
DOI: 10.1055/a-1477-6043
paper

Wittig Reactions of Maleimide-Derived Stabilized Ylides with Alkyl Pyruvates: Concise Approach to Methyl Ester of (±)-Chaetogline A

Santosh V. Shelar
a   Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune, 411 008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
,
a   Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune, 411 008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
› Author Affiliations
N.P.A. thanks Science and Engineering Research Board (SERB), New Delhi, for financial support.


Abstract

A facile synthesis of methyl ester of chaetogline A is reported starting from the corresponding methyl 1-methyltryptophanate-derived­ maleimide. A stereoselective Wittig olefination with a carbonyl function in methyl pyruvate followed by phosphorous pentoxide-induced­ regioselective dehydrative cyclization are the essential reactions. An acid-induced thermodynamically driven stereoselective β- to α-position migration of the exocyclic C=C bond unit in ethyl tetrahydroindolizinoindolylidenepropanoate is described.

Supporting Information



Publication History

Received: 09 March 2021

Accepted after revision: 08 April 2021

Accepted Manuscript online:
08 April 2021

Article published online:
03 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
  • 2 Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
  • 3 Netz N, Opatz T. Mar. Drugs 2015; 13: 4814
  • 4 Klas KR, Kato H, Frisvad JC, Yu F, Newmister SA, Fraley AE, Sherman DH, Tsukamoto S, Williams RM. Nat. Prod. Rep. 2018; 35: 532
  • 5 Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, Li S, Chen C, Jiao R, Xu Q, Ng SW, Tan RX. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 18138
  • 6 Yan W, Zhao SS, Ye YH, Zhang YY, Zhang Y, Xu JY, Yin SM, Tan RX. J. Nat. Prod. 2019; 82: 2132
  • 7 Cantrell CL, Dayan FE, Duke SO. J. Nat. Prod. 2012; 75: 1231
  • 8 Dayan FE, Duke SO. Plant Physiol. 2014; 166: 1090
  • 9 Yan W, Cao LL, Zhang YY, Zhao R, Zhao SS, Khan B, Ye YH. Molecules 2018; 23: 2873
  • 10 Shi Y, Xu Z, Tan R, Lei X. J. Org. Chem. 2019; 84: 8766
  • 11 Kalshetti MG, Argade NP. J. Org. Chem. 2018; 83: 12164
  • 12 Markad SB, Argade NP. J. Org. Chem. 2018; 83: 382
  • 13 Kalshetti MG, Argade NP. J. Org. Chem. 2017; 82: 11126
  • 14 Desai SB, Argade NP. J. Org. Chem. 1997; 62: 4862
  • 15 Chupakhina E, Gechta M, Ivanova A, Kantina G, Dar’in D, Krasavin M. Synthesis 2021; 53: 1292
  • 16 Hedaya E, Theodoropulos S. Tetrahedron 1968; 24: 2241
  • 17 Zhou R, Wang J, Yu J, He Z. J. Org. Chem. 2013; 78: 10596
  • 18 Paternotte I, Fan HJ, Scréve P, Claesen M, Tulkens PM, Sonveaux E. Bioorg. Med. Chem. 2001; 9: 493
  • 19 Calcaterra A, Mangiardi L, Monache GD, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. Molecules 2020; 25: 414 ; and references cited therein
  • 20 CCDC 2058815 (9) and 2059072 (15) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 21 Balasubramaniyan V, Argade NP. Tetrahedron 1989; 45: 835