Subscribe to RSS
DOI: 10.1055/a-1478-2280
Nickel-Catalyzed Electronically Reversed Enantioselective Hydrocarbofunctionalizations of Acrylamides
This work was supported by the NSFC (21971101 and 21801126), Guangdong Basic and Applied Basic Research Foundation (2019A1515011976), The Pearl River Talent Recruitment Program (2019QN01Y261), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), and the Thousand Talents Program for Young Scholars.
Dedicated to the 10th anniversary of the Chemistry Department at SUSTech.
Abstract
Asymmetric hydrocarbofunctionalization of alkenes has emerged as an efficient strategy for synthesizing optically active molecules through a carbon–carbon bond-forming process from readily available alkenes and carboelectrophiles. Here, we present a summary of our efforts to control the regio- and enantioselectivity of hydrocarbofunctionalizations of electron-deficient alkenes with a nickel catalyst and a chiral bisoxazolidine ligand. The reaction permits electron-reversed hydrocarbofunctionalizations of acrylamides with excellent enantioselectivity. This operationally simple protocol permits the asymmetric hydroalkylation, hydrobenzylation, or hydropropargylation of acrylamides. This reaction is useful for preparing a wide range of α-branched chiral amides with broad functional-group tolerance.
Key words
hydroalkylations - hydrobenzylations - hydropropargylations - hydrofunctionalizations - asymmetric catalysis - cross-couplingsPublication History
Received: 01 April 2021
Accepted after revision: 08 April 2021
Accepted Manuscript online:
08 April 2021
Article published online:
03 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
- 1b Zhu Y, Wang Q, Cornwall RG, Shi Y. Chem. Rev. 2014; 114: 8199
- 1c Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
- 1d Qi X, Diao T. ACS Catal. 2020; 10: 8542
- 1e Jiang H, Studer A. Chem. Soc. Rev. 2020; 49: 1790
- 2a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 2b McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
- 2c Wang X.-X, Lu X, Li Y, Wang J.-W, Fu Y. Sci. China: Chem. 2020; 63: 1586
- 3a Lu X, Xiao B, Zhang Z, Gong T, Su W, Ji J, Fu Y, Liu L. Nat. Commun. 2016; 7: 11129
- 3b Green SA, Vásquez Céspedes S, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 11317
- 3c Green SA, Huffman TR, McCourt R, van der Puyl V, Shenvi RA. J. Am. Chem. Soc. 2019; 141: 7709
- 3d Sun S.-Z, Romano C, Martin R. J. Am. Chem. Soc. 2019; 141: 16197
- 4a Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 4b Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
- 4c Geist E, Kirschning A, Schmidt T. Nat. Prod. Rep. 2014; 31: 441
- 4d Iwasaki T, Kambe N. Top. Curr. Chem. 2016; 374: 66
- 4e Chen Z, Rong M.-Y, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
- 5a Fu GC. ACS Cent. Sci. 2017; 3: 692
- 5b Sommer H, Juliá Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
- 5c Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 6a Li Y, Pang H, Wu D, Li Z, Wang W, Wei H, Fu Y, Yin G. Angew. Chem. Int. Ed. 2019; 58: 8872
- 6b He Y, Cai Y, Zhu S. J. Am. Chem. Soc. 2017; 139: 1061
- 6c Zhang Y, Han B, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 13860
- 6d Saper NI, Ohgi A, Small DW, Semba K, Nakao Y, Hartwig JF. Nat. Chem. 2020; 12: 276
- 6e Zhan Y.-Z, Xiao N, Shu W. Nat. Commun. 2021; 12: 928
- 6f Hydrofunctionalization . Anaikov VP, Tanaka M. Springer; Berlin: 2013
- 6g Zhang W.-B, Yang X.-T, Ma J.-B, Su Z.-M, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 5628
- 6h Cai Y, Ye X, Liu S, Shi S.-L. Angew. Chem. Int. Ed. 2019; 58: 13433
- 7a Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
- 7b Zhou F, Zhang Y, Xu X, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 1754
- 8a He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
- 8b Yang Z.-P, Fu GC. J. Am. Chem. Soc. 2020; 142: 5870
- 9a Bera S, Mao R, Hu X. Nat. Chem. 2021; 13: 270
- 9b Qian D, Bera S, Hu X. J. Am. Chem. Soc. 2021; 143: 1959
- 9c Wang J.-W, Li Y, Nie W, Zhang C, Yu Z.-A, Zhao Y.-F, Lu X, Yao F. Nat. Commun. 2021; 12: 1313
- 9d Wang S, Zhang J.-X, Zhang T.-Y, Meng H, Chen B.-H, Shu W. Nat. Commun. 2021; 12 DOI: 10.1038/s41467-021-22983-7.
- 10 Shi L, Xing L.-L, Hu W.-B, Shu W. Angew. Chem. Int. Ed. 2021; 60: 1599
- 11a Watanabe S, Ario A, Iwasawa N. J. Antibiot. 2019; 72: 490
- 11b Lv L, Zhu D, Qiu Z, Li J, Li C.-J. ACS Catal. 2019; 9: 9199
- 12 Bera S, Hu X. Angew. Chem. Int. Ed. 2019; 58: 13854
- 13a Zhu S, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
- 13b Zhu S, Niljianskul N, Buchwald SL. Nat. Chem. 2016; 8: 144
- 14 He Y, Liu C, Yu L, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 21530
- 15 CCDC 1993511 contains the supplementary crystallographic data for compound 3k. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures