This work was supported by the NSFC (21971101 and 21801126), Guangdong Basic and Applied Basic Research Foundation (2019A1515011976), The Pearl River Talent Recruitment Program (2019QN01Y261), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), and the Thousand Talents Program for Young Scholars.
Dedicated to the 10th anniversary of the Chemistry Department at SUSTech.
Abstract
Asymmetric hydrocarbofunctionalization of alkenes has emerged as an efficient strategy for synthesizing optically active molecules through a carbon–carbon bond-forming process from readily available alkenes and carboelectrophiles. Here, we present a summary of our efforts to control the regio- and enantioselectivity of hydrocarbofunctionalizations of electron-deficient alkenes with a nickel catalyst and a chiral bisoxazolidine ligand. The reaction permits electron-reversed hydrocarbofunctionalizations of acrylamides with excellent enantioselectivity. This operationally simple protocol permits the asymmetric hydroalkylation, hydrobenzylation, or hydropropargylation of acrylamides. This reaction is useful for preparing a wide range of α-branched chiral amides with broad functional-group tolerance.
15 CCDC 1993511 contains the supplementary crystallographic data for compound 3k. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures