RSS-Feed abonnieren
DOI: 10.1055/a-1543-6156
The Potential of Shear Wave Elastography to Reduce Unnecessary Biopsies in Breast Cancer Diagnosis: An International, Diagnostic, Multicenter Trial
Das Potenzial von Scherwellen-Elastografie zur Reduktion unnötiger Biopsien in der Brustkrebsdiagnostik: Eine internationale, diagnostische, multizentrische Studie Gefördert durch: Siemens Medical Solutions USA, IncAbstract
Purpose In this prospective, multicenter trial we evaluated whether additional shear wave elastography (SWE) for patients with BI-RADS 3 or 4 lesions on breast ultrasound could further refine the assessment with B-mode breast ultrasound for breast cancer diagnosis.
Materials and Methods We analyzed prospective, multicenter, international data from 1288 women with breast lesions rated by conventional 2 D B-mode ultrasound as BI-RADS 3 to 4c and undergoing 2D-SWE. After reclassification with SWE the proportion of undetected malignancies should be < 2 %. All patients underwent histopathologic evaluation (reference standard).
Results Histopathologic evaluation showed malignancy in 368 of 1288 lesions (28.6 %). The assessment with B-mode breast ultrasound resulted in 1.39 % (6 of 431) undetected malignancies (malignant lesions in BI-RADS 3) and 53.80 % (495 of 920) unnecessary biopsies (biopsies in benign lesions). Re-classifying BI-RADS 4a patients with a SWE cutoff of 2.55 m/s resulted in 1.98 % (11 of 556) undetected malignancies and a reduction of 24.24 % (375 vs. 495) of unnecessary biopsies.
Conclusion A SWE value below 2.55 m/s for BI-RADS 4a lesions could be used to downstage these lesions to follow-up, and therefore reduce the number of unnecessary biopsies by 24.24 %. However, this would come at the expense of some additionally missed cancers compared to B-mode breast ultrasound (rate of undetected malignancies 1.98 %, 11 of 556, versus 1.39 %, 6 of 431) which would, however, still be in line with the ACR BI-RADS 3 definition (< 2 % of undetected malignancies).
Zusammenfassung
Ziele In dieser prospektiven, multizentrischen Studie wurde untersucht, ob die zusätzliche Verwendung von Scherwellen-Elastografie (SWE) für Patientinnen mit BI-RADS-3- oder -4-Läsionen die Untersuchung mit B-Mode-Brustultraschall weiter verbessern kann.
Methoden Wir analysierten Daten von 1288 Frauen mit Brustläsionen, die im konventionellen 2D-B-Mode-Ultraschall als BI-RADS 3 bis 4c eingestuft wurden und zusätzlich mittels 2D-SWE untersucht wurden. Nach Rekategorisierung mittels SWE sollte der Anteil an unerkannten Karzinomen < 2 % sein.
Ergebnisse 368 der 1288 Läsionen (28,6 %) zeigten ein Karzinom. Die Untersuchung mit B-Mode-Brustultraschall resultierte in 1,39 % (6 von 431) unerkannten Karzinomen (maligne Läsionen in BI-RADS 3) und 53,80 % (495 von 920) unnötigen Biopsien (Biopsien in benignen Läsionen). Die Rekategorisierung von BI-RADS-4a-Läsionen mit einem SWE-Cut-off von 2,55 m/s resultierte in 1,98 % (11 von 556) unerkannten Karzinomen und einer Reduktion von 24,24 % (375 vs. 495) unnötiger Biopsien.
Schlussfolgerung Ein SWE-Wert von unter 2,55 m/s für BI-RADS-4a-Läsionen könnte verwendet werden, um diese Läsionen zu einer Follow-up-Untersuchung herabzustufen und somit die Anzahl minimalinvasiver Biopsien um etwa 24,24 % zu reduzieren. Allerdings würde dies auf Kosten einiger zusätzlich verpasster Karzinome im Vergleich zur Untersuchung mit B-Mode-Brustultraschall erfolgen (Rate an unerkannten Karzinomen 1,98 %, 11 von 556, versus 1,39 %, 6 von 431), was jedoch weiterhin im Rahmen der ACR-BI-RADS-3-Definition liegen würde (< 2 % unerkannte Karzinome).
Publikationsverlauf
Eingereicht: 17. November 2020
Angenommen: 28. Juni 2021
Artikel online veröffentlicht:
23. August 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Ohuchi N, Suzuki A, Sobue T. et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): A randomised controlled trial. Lancet 2016; 387: 341-348
- 2 Berg WA, Zhang Z, Lehrer D. et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA – J Am Med Assoc 2012; 307: 1394-1404
- 3 Buchberger W, Geiger-Gritsch S, Knapp R. et al. Combined screening with mammography and ultrasound in a population-based screening program. Eur J Radiol 2018; 101: 24-29
- 4 Golatta M, Schweitzer-Martin M, Harcos A. et al. Evaluation of Virtual Touch Tissue Imaging Quantification, a New Shear Wave Velocity Imaging Method, for Breast Lesion Assessment by Ultrasound. Biomed Res Int 2014; 2014
- 5 Ianculescu V, Ciolovan LM, Dunant A. et al. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol 2014; 83: 773-777
- 6 Kapetas P, Clauser P, Woitek R. et al. Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative „rule-in“ and „rule-out“ threshold values. Sci Rep 2018; 8
- 7 Sun JW, Wang XL, Zhao Q. et al. Virtual touch tissue imaging and quantification (VTIQ) in the evaluation of breast lesions: The associated factors leading to misdiagnosis. Eur J Radiol 2019; 110: 97-104
- 8 Li XL, Xu HX, Bo XW. et al. Value of Virtual Touch Tissue Imaging Quantification for Evaluation of Ultrasound Breast Imaging-Reporting and Data System Category 4 Lesions. Ultrasound Med Biol 2016; 42: 2050-2057
- 9 Yao MH, Wu R, Xu G. et al. A novel two-dimensional quantitative shear wave elastography to make differential diagnosis of breast lesions: Comprehensive evaluation and influencing factors. Clin Hemorheol Microcirc 2016; 64: 223-233
- 10 Kong WT, Zhou WJ, Wang Y. et al. The value of virtual touch tissue imaging quantification in the differential diagnosis between benign and malignant breast lesions. J Med Ultrason 2019; 46: 459-466
- 11 Tozaki M, Saito M, Benson J. et al. Shear Wave Velocity Measurements for Differential Diagnosis of Solid Breast Masses: A Comparison between Virtual Touch Quantification and Virtual Touch IQ. Ultrasound Med Biol 2013; 39: 2233-2245
- 12 Berg WA, Cosgrove DO, Doré CJ. et al. Shear-wave elastography improves the specificity of breast US: The BE1 multinational study of 939 masses. Radiology 2012; 262: 435-449
- 13 Wang ZL, Sun L, Li Y. et al. Relationship between elasticity and collagen fiber content in breast disease: A preliminary report. Ultrasonics 2015; 57: 44-49
- 14 Riegler J, Labyed Y, Rosenzweig S. et al. Tumor elastography and its association with collagen and the tumor microenvironment. Clin Cancer Res 2018; 24: 4455-4467
- 15 Yoo J, Seo BK, Park EK. et al. Tumor stiffness measured by shear wave elastography correlates with tumor hypoxia as well as histologic biomarkers in breast cancer. Cancer Imaging 2020; 20
- 16 Plekhanov AA, Sirotkina MA, Sovetsky AA. et al. Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography. Sci Rep 2020; 10: 11781
- 17 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall der Medizin 2017; 38: e16-e47
- 18 Sǎftoiu A, Gilja OH, Sidhu PS. et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall der Medizin 2019; 40: 425-453
- 19 Wojcinski S, Farrokh A, Weber S. et al. Multicenter Study of Ultrasound Real-Time Tissue Elastography in 779 Cases for the Assessment of Breast Lesions: Improved Diagnostic Performance by Combining the BI-RADS®-US Classification System with Sonoelastography. Ultraschall der Medizin – Eur J Ultrasound 2010; 31: 484-491
- 20 Hatzung G, Grunwald S, Zygmunt M. et al. Sonoelastography in the diagnosis of malignant and benign breast lesions: Initial clinical experiences. Ultraschall der Medizin 2010; 31: 596-603
- 21 Golatta M, Schweitzer-Martin M, Harcos A. et al. Normal breast tissue stiffness measured by a new ultrasound technique: Virtual touch tissue imaging quantification (VTIQ). Eur J Radiol 2013; 82: e676-e679
- 22 Lee SH, Chang JM, Kim WH. et al. Added Value of Shear-Wave Elastography for Evaluation of Breast Masses Detected with Screening US Imaging. Radiology 2014; 273: 61-69
- 23 Barr RG, Zhang Z. Shear-Wave Elastography of the Breast: Value of a Quality Measure and Comparison with Strain Elastography. Radiology 2015; 275: 45-53
- 24 Cantisani V, David E, Barr RG. et al. US-Elastography for Breast Lesion Characterization: Prospective Comparison of US BIRADS, Strain Elastography and Shear wave Elastography. Ultraschall der Medizin – Eur J Ultrasound 2020;
- 25 Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol 2019; 19: 1-18
- 26 Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018; 2: 719-731
- 27 Pfob A, Sidey-Gibbons C, Lee HB. et al. Identification of breast cancer patients with pathologic complete response in the breast after neoadjuvant systemic treatment by an intelligent vacuum-assisted biopsy. Eur J Cancer 2021; 143: 134-146
- 28 Pfob A, Mehrara BJ, Nelson JA. et al. Towards Patient-Centered Decision-Making in Breast Cancer Surgery. Ann Surg 2021;
- 29 Sidey-Gibbons C, Pfob A, Asaad M. et al. Development of Machine Learning Algorithms for the Prediction of Financial Toxicity in Localized Breast Cancer Following Surgical Treatment. JCO Clin cancer informatics 2021; 5: 338-347