RSS-Feed abonnieren
DOI: 10.1055/a-1553-0427
Multi-Instance Learning Approach to Predictive Modeling of Catalysts Enantioselectivity
DZ thanks the French Embassy in Russia for the PhD fellowship. TM thanks Russian Science Foundation (Grant No. 19-73-10137) for the support.
Abstract
Here, we report an application of the multi-instance learning approach to predictive modeling of enantioselectivity of chiral catalysts. Catalysts were represented by ensembles of conformations encoded by the pmapper physicochemical descriptors capturing stereoconfiguration of the molecule. Each catalyzed chemical reaction was transformed to a condensed graph of reaction for which ISIDA fragment descriptors were generated. This approach does not require any conformations’ alignment and can potentially be used for a diverse set of catalysts bearing different scaffolds. Its efficiency has been demonstrated in predicting the selectivity of BINOL-derived phosphoric acid catalysts in asymmetric thiol addition to N-acylimines and benchmarked with previously reported models.
Publikationsverlauf
Eingereicht: 10. Juni 2021
Angenommen nach Revision: 16. Juli 2021
Accepted Manuscript online:
16. Juli 2021
Artikel online veröffentlicht:
12. August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Yang W, Fidelis TT, Sun W.-H. ACS Omega 2019; 5: 83
- 2 Yada A, Nagata K, Ando Y, Matsumura T, Ichinoseki S, Sato K. Chem. Lett. 2018; 47: 284
- 3 Kozlowski MC, Dixon SL, Panda M, Lauri G. J. Am. Chem. Soc. 2003; 125: 6614
- 4 Lipkowitz KB, Pradhan M. J. Org. Chem. 2003; 68: 4648
- 5 Melville JL, Lovelock KR. J, Wilson C, Allbutt B, Burke EK, Lygo B, Hirst JD. J. Chem. Inf. Model. 2005; 45: 971
- 6 Zahrt AF, Henle JJ, Rose BT, Wang Y, Darrow WT, Denmark SE. Science 2019; 363
- 7 Henle JJ, Zahrt AF, Rose BT, Darrow WT, Wang Y, Denmark SE. J. Am. Chem. Soc. 2020; 142: 11578
- 8 Yamaguchi S, Sodeoka M. Bull. Chem. Soc. Jpn. 2019; 92: 1701
- 9 Xu L.-C, Li X, Tang M.-J, Yuan L.-T, Zheng J.-Y, Zhang S.-Q, Hong X. Synlett 2020; 31 DOI: 10.1055/s-0040-1705977.
- 10 Dietterich TG, Lathrop RH, Lozano-Pérez T. Artif. Intell. 1997; 89: 31
- 11 Kutlushina A, Khakimova A, Madzhidov T, Polishchuk P. Molecules 2018; 23: 3094
- 12 Zankov DV, Matveieva M, Nikonenko A, Nugmanov R, Varnek A, Polishchuk P, Madzhidov T. ChemRxiv 2020; DOI: 10.26434/chemrxiv.13456277.v1.
- 13 Hoonakker F, Lachiche N, Varnek A, Wagner A. Int. J. Artif. Intell. Tools 2011; 20: 253
- 14 Nugmanov RI, Mukhametgaleev RN, Akhmetshin T, Gimadiev TR, Afonina VA, Madzhidov TI, Varnek A. J. Chem. Inf. Model. 2019; 59: 2516
- 15 Varnek A, Fourches D, Hoonakker F, Solov’ev VP. J. Comput. Aided. Mol. Des. 2005; 19: 693
- 16 Riniker S, Landrum GA. J. Chem. Inf. Model. 2015; 55: 2562
-
17 Implemented modeling protocol is available at (accessed June 7, 2021): https://github.com/dzankov/3D-MIL-QSSR