RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2022; 33(12): 1194-1198
DOI: 10.1055/a-1665-9220
DOI: 10.1055/a-1665-9220
cluster
Organic Photoredox Catalysis in Synthesis – Honoring Prof. Shunichi Fukuzumi’s 70th Birthday
Red-Light-Induced N,N′-Dipropyl-1,13-dimethoxyquinacridinium-Catalyzed [3+2] Cycloaddition of Cyclopropylamines with Alkenes or Alkynes
We are grateful to the University of Arizona and the ACS Petroleum Research Fund (grant no. 59631-DNI3) for financially supporting this work. All NMR data were collected in the NMR facility of the Department of Chemistry and Biochemistry at the University of Arizona, and we thank Dr. Jixun Dai for his help. The purchase of the Bruker NEO 500 MHz spectrometer was supported by the National Science Foundation (Grant No. 1920234) and by the University of Arizona.
Abstract
A red-light-mediated [3+2] annulation of cyclopropylamines with akenes or alkynes in the presence of N,N′-dipropyl-1,13-dimethoxyquinacridinium is reported. An array of cyclopentane or cyclopentene derivatives with diverse functional groups have been obtained in moderate to excellent yields under mild conditions.
Key words
photoredox catalysis - [3+2] cycloaddition - cyclopropylamines - alkenes - alkynes - dipropyldimethoxyquinacridiniumSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1665-9220. Included are general information, substrate synthesis and characterization, mechanistic investigation, experimental procedures, as well as NMR spectroscopy data.
- Supporting Information
Publikationsverlauf
Eingereicht: 26. August 2021
Angenommen nach Revision: 10. Oktober 2021
Accepted Manuscript online:
10. Oktober 2021
Artikel online veröffentlicht:
12. November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, Lin TH, Hutchison TL, Elliott AJ, Parker CD, Ananth SL, Horn LL, Laver GW, Montgomery JA. J. Med. Chem. 2000; 43: 3482
- 1b Jia F, Hong J, Sun P.-H, Chen J.-X, Chen W.-M. Synth. Commun. 2013; 43: 2641
- 2a Trost BM, Kuo GH, Benneche T. J. Am. Chem. Soc. 1988; 110: 621
- 2b Bestmann HJ, Roth D. Synlett 1990; 751
- 2c Boyer SJ, Leahy JW. J. Org. Chem. 1997; 62: 3976
- 3a Corey EJ, Schaaf TK, Huber W, Koelliker U, Weinshenker NM. J. Am. Chem. Soc. 1970; 92: 397
- 3b Das S, Chandrasekhar S, Yadav JS, Grée R. Chem. Rev. 2007; 107: 3286
- 4a Zhou Q, Snider BB. Org. Lett. 2008; 10: 1401
- 4b Nistanaki SK, Boralsky LA, Pan RD, Nelson HM. Angew. Chem. Int. Ed. 2019; 58: 1724
- 4c Liang Y, Li Q, Wei M, Chen C, Sun W, Gu L, Zhu H, Zhang Y. Bioorg. Chem. 2020; 99: 103760
- 6a Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
- 6b Fradette RJ, Kang M, West FG. Angew. Chem. Int. Ed. 2017; 56: 6335
- 7a Trost BM. Angew. Chem., Int. Ed. Engl. 1986; 25: 1
- 7b Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
- 7c Mei L.-y, Wei Y, Xu Q, Shi M. Organometallics 2012; 31: 7591
- 7d Gicquel M, Zhang Y, Aillard P, Retailleau P, Voituriez A, Marinetti A. Angew. Chem. Int. Ed. 2015; 54: 5470
- 7e Kuang Y, Ning Y, Zhu J, Wang Y. Org. Lett. 2018; 20: 2693
- 8 Kurteva VB, Afonso CA. M. Chem. Rev. 2009; 109: 6809
- 9a Boyce GR, Johnson JS. Angew. Chem. Int. Ed. 2010; 49: 8930
- 9b Boyce GR, Liu S, Johnson JS. Org. Lett. 2012; 14: 652
- 10a Ha JD, Lee J, Blackstock SC, Cha JK. J. Org. Chem. 1998; 63: 8510
- 10b Lee HB, Sung MJ, Blackstock SC, Cha JK. J. Am. Chem. Soc. 2001; 123: 11322
- 10c Maity S, Zhu M, Shinabery RS, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
- 10d Nguyen TH, Morris SA, Zheng N. Adv. Synth. Catal. 2014; 356: 2831
- 10e Nguyen TH, Maity S, Zheng N. Beilstein J. Org. Chem. 2014; 10: 975
- 10f Muriel B, Gagnebin A, Waser J. Chem. Sci. 2019; 10: 10716
- 10g Yin Y, Li Y, Gonçalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang K.-W, Jiang Z. J. Am. Chem. Soc. 2020; 142: 19451
- 10h White DH, Noble A, Booker-Milburn KI, Aggarwal VK. Org. Lett. 2021; 23: 3038
- 11a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 11b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
-
11c
Skubi KL,
Blum TR,
Yoon TP.
Chem. Rev. 2016; 116: 10035
-
11d
Shang TY,
Lu LH,
Cao Z,
Liu Y,
He WM,
Yu B.
Chem. Commun. 2019; 55: 5408
- 11e Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
- 12a Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Nature 2019; 565: 343
- 12b Ravetz BD, Tay NE. S, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. ACS Cent. Sci. 2020; 6: 2053
- 13a Mei L, Veleta JM, Gianetti TL. J. Am. Chem. Soc. 2020; 142: 12056
- 13b Mei L, Gianetti T. Synlett 2021; 32: 337
- 14 Mei L, Moutet J, Stull SM, Gianetti TL. J. Org. Chem. 2021; 86: 10640
- 15a Crutchley RJ, Lever AB. P. J. Am. Chem. Soc. 1980; 102: 7128
- 15b Rillema DP, Allen G, Meyer TJ, Conrad D. Inorg. Chem. 1983; 22: 1617
- 16 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
- 17 Red-Light-Induced nPr-DMQA+-Catalyzed [3+2] Cycloaddition of N-Cyclopropylanilines 1 with Alkenes 2; General Procedure In a N2 glove box, an oven-dried (overnight) Schlenk tube containing a stirring bar was charged with the appropriate substrate 1 (0.2 mmol, 1.0 equiv) and alkene 2 (1.0 mmol, 1.2 equiv). This was followed by the addition of [nPr-DMQA+][BF4 –] (1.0 mg, 0.002 mmol, 1.0 mol%) in degassed MeNO2 (1 mL), transferred from a stock solution of the catalyst (10.0 mg) in degassed MeNO2 (10 mL). The Schlenk tube was then sealed and removed from the glove box, and the solution was stirred at rt under red LED (λmax = 640 nm) irradiation until the reaction was complete. The mixture was then concentrated under reduced pressure on a rotary evaporator, and the crude product was purified by flash chromatography (FC) [silica gel, hexanes–Et2O or EtOAc (200:1 to 6:1)]. trans-N-(2-Phenylcyclopentyl)aniline (3a-I) 10c Colorless oil; yield: 20 mg (42%). Rf = 0.3 (hexanes–EtOAc, 20:1). FC: hexanes–Et2O (99:1). 1H NMR (500 MHz, CDCl3): δ = 7.31 (dd, J = 8.0, 8.0 Hz, 2 H, ArH), 7.25–7.21 (m, 3 H, ArH), 7.12 (dd, J = 8.0, 8.0 Hz, 2 H, ArH), 6.65 (dd, J = 8.0, 8.0 Hz, 1 H, ArH), 6.48 (d, J = 8.0 Hz, 2 H, ArH), 4.01 (dd, J = 12.0, 6.0 Hz, 1 H, CH), 3.46 (dd, J = 15.0, 7.5 Hz, 1 H, CH), 3.37 (bs, 1 H, NH), 2.22–2.07 (m, 3 H, CH2), 2.02–1.94 (m, 1 H, CH2), 1.89–1.76 (m, 2 H, CH2). 13C NMR (126 MHz, CDCl3): δ = 147.91, 140.84, 129.18, 128.77, 128.43, 126.59, 117.01, 113.32, 57.57, 48.15, 32.01, 28.94, 22.19. cis-N-(2-Phenylcyclopentyl)aniline (3a-II) 10c Colorless oil; yield: 2 mg, 46%; Rf = 0.2 (hexanes–EtOAc, 20:1). FC: hexanes–Et2O (99:1). 1H NMR (500 MHz, CDCl3): δ = 7.34–7.28 (m, 4 H, ArH), 7.22 (dd, J = 7.5, 7.5 Hz, 1 H, ArH), 7.13 (dd, J = 7.5, 7.5 Hz, 2 H, ArH), 6.67 (dd, J = 7.5, 7.5 Hz, 1 H, ArH), 6.55 (d, J = 7.5 Hz, 2 H, ArH), 3.80 (bs, 1 H, NH), 3.80 (dd, J = 13.0, 7.0 Hz, 1 H, CH), 2.93 (dd, J = 17.0, 8.0 Hz, 1 H, CH), 2.38 (ddd, J = 21.0, 14.5, 7.5 Hz, 1 H, CH2), 2.26–2.19 (m, 1 H, CH2), 1.94–1.82 (m, 2 H, CH2), 1.81–1.75 (m, 1 H, CH2), 1.66–1.58 (m, 1 H, CH2). 13C NMR (126 MHz, CDCl3): δ = 148.16, 143.83, 129.25, 128.69, 127.48, 126.54, 117.19, 113.47, 61.58, 53.27, 33.59, 33.55, 23.46.