RSS-Feed abonnieren
DOI: 10.1055/a-1705-0307
Access to Chiral 1-Aminoindene Derivatives by Asymmetric Brønsted Acid Catalysis
This work was supported by the Fundamental Research Funds for the Central Universities of China (grant nos. PA2020GDKC0011, PA2021GDKC0068) and the Guangdong Provincial Key Laboratory of Catalysis (grant no. 2020B121201002).
Abstract
Asymmetric organocatalysis is emerging as an elegant tool for accelerating chemical reactions and creating specific types of molecules. Chiral Brønsted acid catalysis is an important area of organocatalysis. We recently described an intramolecular iminium-ion cyclization reaction of 2-alkenylbenzaldimines catalyzed by a chiral Brønsted acid (a BINOL-derived N-triflylphosphoramide) for the synthesis of chiral 1-aminoindenes and tetracyclic 1-aminoindanes in good yields and high enantioselectivities. One of the resulting 1-aminoindenes is a useful intermediate for the synthesis of (S)-rasagiline, an effective drug for the symptomatic treatment of Parkinson’s disease. Moreover, some tetracyclic 1-aminoindanes are present in the skeletons of homoisoflavanoid natural products such as brazilin.
Key words
asymmetric catalysis - organocatalysis - Brønsted acid catalysis - iminium ions - aminoindenes - aminoindanesPublikationsverlauf
Eingereicht: 10. November 2021
Angenommen nach Revision: 24. November 2021
Accepted Manuscript online:
24. November 2021
Artikel online veröffentlicht:
21. Dezember 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 1b Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
- 2a Shao Y.-D, Cheng D.-J. ChemCatChem 2021; 13: 1271
- 2b Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 2c Tran VT, Nimmagadda SK, Liu M, Engle KM. Org. Biomol. Chem. 2020; 18: 618
- 2d Rahman A, Lin X. Org. Biomol. Chem. 2018; 16: 4753
- 2e Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
- 2f Li X, Song Q. Chin. Chem. Lett. 2018; 29: 1181
- 2g Gualandi A, Rodeghiero G, Cozzi PG. Asian J. Org. Chem. 2018; 7: 1957
- 3a Borie C, Ackermann L, Nechab M. Chem. Soc. Rev. 2016; 45: 1368
- 3b Gabriele B, Mancuso R, Veltri L. Chem. Eur. J. 2016; 22: 5056
- 4a Blaskó G, Hussain SF, Freyer AJ, Shamma M. Tetrahedron Lett. 1981; 22: 3127
- 4b Táborská E, Bochořáková H, Soušek J, Sedmera P, Vavrečková C, Šimánek V. Collect. Czech. Chem. Commun. 1996; 61: 1064
- 4c Huang X.-Y, Shao Z.-X, An L.-J, Xue J.-J, Li D.-H, Li Z.-L, Hua H.-M. Fitoterapia 2019; 139: 104359
- 5 Oldfield V, Keating GM, Perry CM. Drugs 2007; 67: 1725
- 6 Yu H, Kim IJ, Folk JE, Tian X, Rothman RB, Baumann MH, Dersch CM, Flippen-Anderson JL, Parrish D, Jacobson AE, Rice KC. J. Med. Chem. 2004; 47: 2624
- 7 Dorsey BD, Levin RB, McDaniel SL, Vacca JP, Guare JP, Darke PL, Zugay JA, Emini EA, Schleif WA, Quintero JC, Lin JH, Chen I.-W, Holloway MK, Fitzgerald PM. D, Axel MG, Ostovic D, Anderson PS, Huff JR. J. Med. Chem. 1994; 37: 3443
- 8a Basurto S, Miguel D, Moreno D, Neo AG, Quesada R, Torroba T. Org. Biomol. Chem. 2010; 8: 552
- 8b Irshaidat T. Molecules 2017; 22: 720
- 9a Jimenez-Halla JO, Solà M. Chem. Eur. J. 2009; 15: 12503
- 9b Lebedev AY, Izmer VV, Asachenko AF, Tzarev AA, Uborsky DV, Homutova YA, Shperber ER, Canich JA. M, Voskoboynikov AZ. Organometallics 2009; 28: 1800
- 10a Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 11098
- 10b Yu X, Lu X. Adv. Synth. Catal. 2011; 353: 2805
- 10c Pham MV, Cramer N. Chem. Eur. J. 2016; 22: 2270
- 10d Chen M.-H, Hsieh J.-C, Lee Y.-H, Cheng C.-H. ACS Catal. 2018; 8: 9364
- 11 Bai J.-F, Yasumoto K, Kano T, Maruoka K. Chem. Eur. J. 2018; 24: 10320
- 12 Wu X, Ding D, Zhang Y, Jiang H.-J, Wang T, Zhao L.-P. Chem. Commun. 2021; 57: 9680
- 13 Caballero-García G, Goodman JM. Org. Biomol. Chem. 2021; 19: 9565
- 14 Livingstone R. Nat. Prod. Rep. 1987; 4: 25