Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(11): 1011-1016
DOI: 10.1055/a-1787-1159
DOI: 10.1055/a-1787-1159
synpacts
The Conceptual Development of a Conjunctive Olefination
We thank the Engineering and Physical Sciences Research Council (EPSRC, New Investigator Award, Grant Number EP/V006401/1 to M.S.) for funding. M.S. thanks the University of Nottingham and the Green Chemicals Beacon of Excellence for a Nottingham Research Fellowship. D.F. thanks the School of Chemistry, University of Nottingham, for a doctoral fellowship.
Abstract
We recently discovered a functional group tolerant and transition-metal-free conjunctive olefination reaction with applications in late-stage functionalization chemistry. In this Synpacts contribution, we analyze the conceptual background that has stimulated the discovery of this reactivity and reflect on the key aspects of its development.
1 Introduction
2 Conceptual Background
2.1 Photoredox-Mediated Giese Reaction
2.2 Photoredox Radical-Polar Reactivity
3 The Development of the Process
4 Conclusion
Key words
photoredox catalysis - Wittig reaction - radical-polar crossover - conjunctive olefination - radical chemistryPublication History
Received: 24 February 2022
Accepted after revision: 03 March 2022
Accepted Manuscript online:
03 March 2022
Article published online:
01 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Stephenson CR. J, Studer A, Curran DP. Beilstein J. Org. Chem. 2013; 9: 2778
- 2a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 2b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
-
3
Yan M,
Kawamata Y,
Baran PS.
Chem. Rev. 2017; 117: 13230
-
4
Skubi KL,
Blum TR,
Yoon TP.
Chem. Rev. 2016; 116: 10035
- 5a The Nobel Prize in Chemistry 2021, see The Nobel Prize (accessed Feb 24, 2022): https://www.nobelprize.org/prizes/chemistry/2021/summary/
- 5b The Nobel Prize in Chemistry 2010, see The Nobel Prize (accessed Feb 24, 2022): https://www.nobelprize.org/prizes/chemistry/2010/summary/.
- 6a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 6b Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 7a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 7b Ananikov VP. ACS Catal. 2015; 5: 1964
- 8a Noble A, McCarver SJ, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
- 8b Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322 ; see also ref. 6b
- 9 Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere A., Diederich F.; Wiley-VCH: Weinheim, 2004;
- 10a Börgel J, Ritter T. Chem 2020; 6: 1877
-
10b
Guillemard L,
Kaplaneris N,
Ackermann L,
Johansson MJ.
Nat. Rev. Chem. 2021; 5: 522
- 11a Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2015; 351: 70 ; For a review on dicarbofunctionalization of alkenes, see
- 11b Dhungana RK, KC S, Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
- 12 Filippini D, Silvi M. Nat. Chem. 2022; 14: 66
- 13 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
- 14a Normant JF. Synthesis 1972; 63
- 14b Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
- 14c Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
- 15 Giese B. Angew. Chem., Int. Ed. Engl. 1983; 22: 753
- 16 Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
- 17 Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
- 18 Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 5697
- 19a Ramirez NP, Gonzalez-Gomez JC. Eur. J. Org. Chem. 2017; 2154
- 19b El-Hage F, Schöll C, Pospech J. J. Org. Chem. 2020; 85: 13853
- 19c Dang HT, Haug GC, Nguyen VT, Vuong NT. H, Nguyen VD, Arman HD, Larionov OV. ACS Catal. 2020; 10: 11448
- 20 Gant KanegusukuA. L, Roizen JL. Angew. Chem. Int. Ed. 2021; 60: 21116
- 21a Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
- 21b Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
- 21c Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
- 22 Sahoo B, Li JL, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 11577
- 23 Silvi M, Sandford C, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 5736
- 24a Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
- 24b Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
- 25 Teruo U, Sumi I. Tetrahedron Lett. 1990; 31: 3579
- 26a Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
- 26b Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
- 27 Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653
- 28 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
- 29 Donabauer K, Maity M, Berger AL, Huff GS, Crespi S, König B. Chem. Sci. 2019; 10: 5162
-
30
Shang T.-Y,
Lu L.-H,
Cao Z,
Liu Y,
He W.-M,
Yu B.
Chem. Commun. 2019; 55: 5408
- 31 Wittig G. Science 1980; 210: 600
- 32a Barton DH. R, Togo H, Zard SZ. Tetrahedron Lett. 1985; 26: 6349
- 32b Barton DH. R, Boivin J, Crépon E, Sarma J, Togo H, Zaid SZ. Tetrahedron 1991; 47: 7091
- 33 Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
For relevant examples, see:
For selected examples, see:
For reviews, see: