Synlett 2022; 33(10): 983-987 DOI: 10.1055/a-1801-4344
Synthesis of the Icetexane Diterpenoids (±)-Rosmaridiphenol, (±)-Pisiferin, and (±)-Barbatusol from Abietane
Thuy Quynh Le
,
JuHui Lee
,
This research was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1F1A1049992).
Abstract
We report the rearrangement of abietane core with trifluoromethanesulfonic anhydride in pyridine to afford the icetexane core, a key intermediate for total syntheses of the structurally intriguing and biologically active compounds (±)-barbatusol, (±)-rosmaridiphenol, and (±)-pisiferin.
Key words
icetexane -
abietane -
diterpenoids -
pisiferin -
rosmaridiphenol -
barbatusol -
ring expansion
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1801-4344.
Supporting Information
Publikationsverlauf
Eingereicht: 08. Februar 2022
Angenommen nach Revision: 17. März 2022
Accepted Manuscript online: 17. März 2022
Artikel online veröffentlicht: 12. April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Fernández-Alonso JL,
Vega N,
Filgueira JJ,
Pérez G.
Biochem. Syst. Ecol. 2003; 31: 617
1b
Garcia Vallejo MC,
Moujir L,
Burillo J,
León Guerra L,
González M,
Diaz Peñate R,
San Andres L,
Gutiérrez Luis J,
López Blanco F,
Ruiz de Galarreta CM.
Flavour Fragrance J. 2006; 21: 277
1c
Mohammadhosseini M,
Pazoki A,
Akhlaghi H.
Chem. Nat. Compd. 2008; 44: 127
1d
Guajardo Touche EM,
Gómez Lopez E,
Reyes AP,
Sánchez H,
Honecker F,
Achenbach H.
Phytochemistry 1997; 45: 387
2
Amaro-Luis JM,
Herrera JR,
Luis JG.
Phytochemistry 1998; 47: 895
3a
Jassbi AR,
Zare S,
Firuzi O,
Xiao J.
Phytochem. Rev. 2016; 15: 829
3b
Wu Y.-B,
Ni Z.-Y,
Shi Q.-W,
Dong M,
Kiyota H,
Gu Y.-C,
Cong B.
Chem. Rev. 2012; 112: 5967
3c
Bisio A,
Pedrelli F,
D’Ambola M,
Labanca F,
Schito AM,
Govaerts R,
De Tommasi N,
Milella L.
Phytochem. Rev. 2019; 18: 665
3d
Esquivel B,
Calderón JS,
Sánchez AA,
Ramamoorthy TP,
Flores EA,
Dominguez RM.
Rev. Latinoam. Quim. 1996; 24: 44
3e
Esquivel B,
Calderón JS,
Arano MG,
Hernández PM,
Sánchez AA.
Rev. Latinoam. Quim. 2005; 33: 82
3f
Esquivel B.
Nat. Prod. Commun. 2008; 3: 989
4a
Zhang D,
Guo J,
Zhang M,
Liu X,
Ba M,
Tao X,
Yu L,
Guo Y,
Dai J.
J. Nat. Prod. 2017; 80: 3241
4b
Guardia JJ,
Tapia R,
Mahdjour S,
Rodriguez-Serrano F,
Mut-Salud N,
Chahboun R,
Alvarez-Manzaneda E.
J. Nat. Prod. 2017; 80: 308
4c
Esquivel B,
Bustos-Brito C,
Sánchez-Castellanos M,
Nieto-Camacho A,
Ramírez-Apan T,
Joseph-Nathan P,
Quijano L.
Molecules 2017; 22: 1690
4d
Bisio A,
De Mieri M,
Milella L,
Schito AM,
Parricchi A,
Russo D,
Alfei S,
Lapillo M,
Tuccinardi T,
Hamburger M,
De Tommasi N.
J. Nat. Prod. 2017; 80: 503
4e
Xia F,
Luo D,
Wang T,
Ji X,
Xu G.
Fitoterapia 2020; 142: 104521
4f
Huang K.-J,
Wang H,
Xie W.-Z,
Zhang H.-S.
Spectrochim. Acta, Part A 2007; 68: 1180
4g
Kabouche A,
Kabouche Z,
Öztürk M,
Kolak U,
Topçu G.
Food Chem. 2007; 102: 1281
4h
Bustos-Brito C,
Joseph-Nathan P,
Burgueño-Tapia E,
Martínez-Otero D,
Nieto-Camacho A,
Calzada F,
Yépez-Mulia L,
Esquivel B,
Quijano L.
J. Nat. Prod. 2019; 82: 1207
5a
Kobayashi K,
Nishino C.
Agric. Biol. Chem. 1986; 50: 2405
5b
Kobayashi K,
Nishino C,
Fukushima M,
Shiobara Y,
Kodama M.
Agric. Biol. Chem. 1988; 52: 77
6
Kobayashi K,
Nishino C,
Tomita H,
Fukushima M.
Phytochemistry 1987; 26: 3175
7
Naidu VG. M,
Atmakur H,
Katragadda SB,
Devabakthun B,
Kota A,
Reddy SC. K,
Kuncha M,
Vishnu Vardhan MV. P. S,
Kulkarni P,
Janaswamy MR,
Sistla R.
Phytomedicine 2014; 21: 497
8
Berger EA,
Murphy PM,
Farber JM.
Annu. Rev. Immunol. 1999; 17: 657
9
Giacomelli E,
Bertrand S,
Nieverglt A,
Zwick V,
Simoes-Pires C,
Marcourt L,
Rivara-Minten E,
Cuendet M,
Bisio A,
Wolfender J.-L.
Phytochemistry 2013; 96: 257
10
Rodríguez-Hahn L,
Esquivel B,
Sánchez AA,
Sánchez C,
Cárdenas J,
Ramamoorthy TP.
Rev. Latinoam. Quim. 1989; 20: 105
11a
Watson WH,
Tara Z,
Dominguez XA,
Gonzales H,
Guiterrez M,
Aragon R.
Tetrahedron Lett. 1976; 17: 2501
11b
Sánchez C,
Cárdenas J,
Rodríguez-Hahn L,
Ramamoorthy TP.
Phytochemistry 1989; 28: 1681
11c
González AG,
Andrés LS,
Luis JG,
Brito I,
Rodríguez ML.
Phytochemistry 1991; 30: 4067
11d
Fraga BM,
Díaz CE,
Guadaño A,
González-Coloma A.
J. Agric. Food Chem. 2005; 53: 5200
11e
Simmons E,
Yen JR,
Sarpong R.
Org. Lett. 2007; 9: 2705
11f
Ziang Z.-Y,
Huang C.-G,
Xiong H.-B,
Tian K,
Liu W.-X,
Hu Q.-F,
Wang H.-B,
Yang G.-Y,
Huang X.-Z.
Tetrahedron Lett. 2013; 54: 3886
11g
Kelecom A.
Tetrahedron 1983; 39: 3603
12a
Tuckett MW,
Watkins WJ,
Whitby RJ.
Tetrahedron Lett. 1998; 39: 123
12b
Simmons EM,
Sarpong R.
Org. Lett. 2006; 8: 2883
12c
Martinez-Solorio D,
Jennings MP.
Org. Lett. 2009; 11: 189
12d
Wang X,
Pan X,
Zhang C,
Chen Y.
Synth. Commun. 1995; 25: 3413
12e
Wang X.-C,
Pan X.-F.
J. Indian Chem. Soc. 1996; 73: 497
12f
Ning C,
Wang X.-C,
Pan X.-F.
Synth. Commun. 1999; 29: 2115
12g
Cortez F. deJ,
Lapointe D,
Hamlin AM,
Simmons EM,
Sarpong R.
Tetrahedron 2013; 69: 5665
12h
Simmons EM,
Yen JR,
Sarpong R.
Org. Lett. 2007; 9: 2705
13
Matsumoto T,
Imai S,
Yoshinari T,
Matsuno S.
Bull. Chem. Soc. Jpn. 1986; 59: 3103
14
Kametani T,
Kondoh H,
Tsubuki M,
Honda T.
J. Chem. Soc., Perkin Trans. 1, 1990; 5
15a
Thommen C,
Neuburger M,
Gademann K.
Chem. Eur. J. 2017; 23: 120
15b
Cao W,
Liu T,
Yang S,
Liu M,
Pan Z,
Zhou Y,
Deng X.
J. Nat. Prod. 2021; 84: 2012
15c
Nisigaki E,
Sugamoto K,
Nishida M,
Matsushita Y.-i.
Chem. Lett. 2016; 45: 746
16a
Seong C,
Kang J,
Lee J,
Oh CH.
Bull. Korean Chem. Soc. 2021; 42: 517
16b
Kang J,
Ham S,
Seong C,
Oh CH.
Synlett 2021; 32: 1039
16c
Seong C,
Kang J,
Chai U,
Mac DH,
Oh CH.
Synlett 2020; 31: 1953
17
(4aR ,11aS )-8-Isopropyl-7-methoxy-1,1-dimethyl-1,2,3,4a,5,11a-hexahydro-4H -dibenzo[a ,d ][7]annulen-4-one (4) and (4aR ,11aS )-8-Isopropyl-7-methoxy-1,1-dimethyl-1,2,3,4a,5,11a-hexahydro-4H -dibenzo[a ,d ][7]annulen-4-one (4)
Tf2 O (0.2 mL, 5.2 mmol, 2 equiv) was added to a solution of 3 (860 mg, 2.6 mmol, 1 equiv) in anhyd pyridine (8.00 mL) at 0 °C, and the resulting mixture was stirred at 0 °C for 5 min and then at rt for 1 h. The mixture was then diluted with H2 O (50 mL) and extracted with EtOAc (2 × 30 mL). The filtrate was washed sequentially with 10% aq NaHCO3 (2 × 10 mL), 1 M HCl (10 mL), and brine (5 mL), then dried (Na2 SO4 ) and filtered. The residue was washed with EtOAc, and the filtrate was evaporated to give a residue that was purified by chromatography [silica gel, EtOAc–hexane (1:20)] to give a yellow solid; yield: 610 mg (75%); mp 156–157 °C.
cis-4
1 H NMR (400 MHz, CDCl3 ): δ = 6.93 (s, 1 H), 6.69 (s, 1 H), 6.56 (dd, J = 10.6, 1.8 Hz, 1 H), 5.84 (dd, J = 10.6, 6.7 Hz, 1 H), 3.84 (s, 3 H), 3.46–3.38 (m, 1 H), 3.32–3.23 (m, 1 H), 2.96 (dd, J = 14.0, 10.9 Hz, 1 H), 2.56 (dd, J = 14.0, 6.4 Hz, 1 H), 2.52–2.42 (m, 1 H), 2.41–2.27 (m, 2 H), 2.01–1.89 (m, 1 H), 1.68–1.59 (m, 1 H), 1.26–1.17 (m, 9 H), 0.99 (s, 3 H). 13 C NMR (101 MHz, CDCl3 ): δ = 211.5, 155.8, 138.5, 134.5, 130.9, 128.9, 128.4, 128.2, 111.7, 56.2, 55.6, 52.8, 41.3, 38.6, 34.5, 32.6, 29.8, 26.6, 22.8, 20.1.
trans-4
1 H NMR (400 MHz, CDCl3 ): δ = 6.96 (s, 1 H), 6.73 (s, 1 H), 6.50 (dd, J = 12.2, 2.3 Hz, 1 H), 5.78 (dd, J = 12.2, 3.9 Hz, 1 H), 3.82 (s, 3 H), 3.31–3.21 (m, 2 H), 2.84–2.68 (m, 2 H), 2.55–2.42 (m, 1 H), 2.40–2.28 (m, 2 H), 1.80–1.60 (m, 2 H), 1.19 (dd, J = 6.9, 1.2 Hz, 6 H), 1.09 (s, 3 H), 1.08 (s, 3 H). 13 C NMR (101 MHz, CDCl3 ): δ = 211.5, 155.8, 138.4, 134.5, 130.9, 128.9, 128.4, 128.1, 111.7, 56.1, 55.6, 52.8, 41.3, 38.6, 34.5, 32.6, 29.8, 26.5, 22.8, 20.0. HRMS (ESI): m/z [M + Na]+ calcd for C21 H28 NaO2 : 335.1987; found: 335.1986.
18
Majetich G,
Hicks R,
Zhang Y,
Tian X,
Feltman TL,
Fang J,
Duncan S.
J. Org. Chem. 1996; 61: 8169
19a
Tada M,
Ohkanda T,
Kurabe J.
Chem. Pharm. Bull. 2010; 58: 27
19b
Bernini R,
Fabrizi G,
Pouységu L,
Deffieux D,
Quideau S.
Curr. Org. Synth. 2012; 9: 650
19c
El Had MA,
Guardia JJ,
Ramos JM,
Taourirte M,
Chahboun R,
Alvarez-Manzaneda E.
Org. Lett. 2018; 20: 5666
20
Zhang J,
Jin Y,
Qiu FQ.
Org. Lett. 2020; 22: 7415