Subscribe to RSS
DOI: 10.1055/a-1881-0529
Synthesis of the Key Skeleton of Phosphoeleganin
Financial support from the Science and Engineering Research Board, India (Project no. CRG/2019/001664), for carrying out this work is gratefully acknowledged.
Abstract
The asymmetric synthesis of the key skeleton of phosphoeleganin has been achieved for the first time by using a convergent approach. The salient features of this synthesis include amidation to install a glycine amide at the C-1 position, Wittig olefination to access the C5–C6 bond, Julia–Kocienski olefinations to prepare the C9–C10 and C13–C14 bonds, and a Takai olefination and a Sonogashira coupling to construct the C17–C18 and C18–C19 bonds, respectively. The route disclosed is highly modular, which will permit the synthesis of various analogues, useful for structure–activity relationship studies on phosphoeleganins.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1881-0529.
- Supporting Information
Publication History
Received: 13 May 2022
Accepted after revision: 21 June 2022
Accepted Manuscript online:
21 June 2022
Article published online:
19 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T. J. Am. Chem. Soc. 1986; 108: 2780
- 1b Boger DL, Hikota M, Lewis BM. J. Org. Chem. 1997; 62: 1748
- 1c Kohama T, Enokita R, Okazaki T, Miyaoka H, Torikata A, Inukai M, Kaneko I, Kagasaki T, Sakaida Y, Satoh A, Shiraishi A. J. Antibiot. 1993; 46: 1503
- 1d Thomasi SS, Ladeira C, Ferreira D, da Fontoura Sprenger R, Badino AC, Ferreira AG, Venâncio T. Helv. Chim. Acta 2016; 99: 281
- 1e Ozasa T, Tanaka K, Sasamata M, Kaniwa H, Shimizu M, Matsumoto H, Iwanami M. J. Antibiot. 1989; 42: 1339
- 1f Oku N, Takada K, Fuller RW, Wilson JA, Peach ML, Pannell LK, McMahon JB, Gustafson KR. J. Am. Chem. Soc. 2010; 132: 10278
- 1g Ai Y, Kozytska MV, Zou Y, Khartulyari AS, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 15426
- 1h Ahlers A, de Haro T, Gabor B, Fürstner A. Angew. Chem. 2016; 128: 1428
- 1i Meissner A, Kishi T, Fujisawa Y, Murai Y, Takamura H, Kadota I. Tetrahedron Lett. 2018; 59: 4492
- 1j Sakurai K, Sakamoto K, Sasaki M, Fuwa H. Chem. Asian J. 2020; 15: 3494
- 2a Matsuhashi H, Shimada K. Tetrahedron 2002; 58: 5619
- 2b Shimada K, Kaburagi Y, Fukuyama T. J. Am. Chem. Soc. 2003; 125: 4048
- 2c Della-Felice F, Sarotti AM, Krische MJ, Pilli RA. J. Am. Chem. Soc. 2019; 141: 13778
- 2d Wang Y.-G, Takeyama R, Kobayashi Y. Angew. Chem. Int. Ed. 2006; 45: 3320
- 2e Sakurai K, Sasak M, Fuwa H. Angew. Chem. Int. Ed. 2018; 57: 5143
- 2f Evans DA, Gage JR, Leighton JL. J. Am. Chem. Soc. 1992; 114: 9434
- 2g Reddy YK, Falck JR. Org. Lett. 2002; 4: 969
- 3a Swingle MB, Amable L, Lawhorn BG, Buck SB, Burke CP, Ratti P, Fisher KL, Boger DL, Honkanen RE. J. Pharmacol. Exp. Ther. 2009; 45: 331
- 3b Paulson JR, Mause ER. V. Adv. Biol. Chem. 2013; 3: 36
- 3c Fabian L, Troscianczuk J, Forer A. Cell Chromosome 2007; 6: 1
- 3d Lewy DS, Gauss C.-M, Soenen DR, Boger DL. Curr. Med. Chem. 2002; 9: 2005
- 4a Imperatore C, Luciano P, Aiello A, Vitalone R, Irace C, Santamaria R, Li J, Guo Y, Menna M. J. Nat. Prod. 2016; 79: 1144
- 4b Luciano P, Imperatore C, Senese M, Aiello A, Casertano M, Guo Y.-W, Menna M. J. Nat. Prod. 2017; 80: 2118
- 5a Das S, Kuilya TK, Goswami RK. J. Org. Chem. 2015; 80: 6467
- 5b Saha D, Mandal GH, Goswami RK. J. Org Chem. 2021; 86: 10006
- 5c Kuilya TK, Goswami RK. Org. Lett. 2017; 19: 2366
- 5d Paul D, Saha S, Goswami RK. Org. Lett. 2018; 20: 4606
- 5e Saha D, Guchhait S, Goswami RK. Org. Lett. 2020; 22: 745
- 5f Guchhait S, Chatterjee S, Ampapathi RS, Goswami RK. J. Org. Chem. 2017; 82: 2414
- 5g Das S, Paul D, Goswami RK. Org. Lett. 2016; 18: 1908
- 5h Mandal GH, Saha D, Goswami RK. Org. Biomol. Chem. 2020; 18: 2346
- 6a Thompson DK, Hubert CH, Wightman RH. Tetrahedron 1993; 49: 3827
- 6b Phaosiri C, Proteau PJ. Bioorg. Med. Chem. Lett. 2004; 14: 5309
- 7a Candy M, Audran G, Bienaymé H, Bressy C, Pons J.-M. J. Org. Chem. 2010; 75: 1354
- 7b Mitsunobu O. Synthesis 1981; 1
- 8a Cichowicz NR. Nagorny P. Org. Lett. 2012; 14: 1058
- 8b Crimmins MT, Haley MW, O’Bryan EA. Org. Lett. 2011; 13: 4712
- 9 Volkmann RA, Kelbaugh PR, Nason DM, Jasys VJ. J. Org. Chem. 1992; 57: 4352
- 10 Alcaraz L, Harnett JJ, Mioskowski C, Martel JP, Le Gall T, Shin D.-S, Falck JR. Tetrahedron Lett. 1994; 35: 5449
- 11a Julia M, Paris J.-M. Tetrahedron Lett. 1973; 14: 4833
- 11b Blakemore PR, Cole WJ, Kocieński PJ, Morley A. Synlett 1998; 26
- 11c Lee J.-L, Lin C.-F, Hsieh L.-Y, Lin W.-R, Chiu H.-F, Wu Y.-C, Wang K.-S, Wu M.-J. Tetrahedron Lett. 2003; 44: 7833
- 12a Stork G, Zhao K. J. Am. Chem. Soc. 1990; 112: 5875
- 12b Williams GM, Roughley SD, Davies JE, Holmes AB, Adams JP. J. Am. Chem. Soc. 1999; 121: 4900
- 12c Crimmins MT, Powell MT. J. Am. Chem. Soc. 2003; 125: 7592
- 13a Sonogashira K. J. Organomet. Chem. 2002; 653: 46
- 13b Crimmins MT, She J. J. Am. Chem. Soc. 2004; 126: 12790
- 14 Mancuso A, Huang S.-L, Swern D. J. Org. Chem. 1978; 43: 2480
- 15a Hurem D, Dudding T. RSC Adv. 2014; 4: 15552
- 15b Kim N.-J, Moon H, Park T, Yun H, Jung W.-J, Chang DJ, Kim D.-D, Suh Y.-G. J. Org. Chem. 2010; 75: 7458
- 15c Brinkmann Y, Oger C, Guy A, Durand T, Galano J.-M. J. Org. Chem. 2010; 75: 2411
- 16 Compound 2 10% Pd/C (111 mg) was added to a stirred solution of 3 (370 mg, 0.4 mmol) in EtOAc (10 mL), under H2 (balloon) at rt, and the mixture was stirred for 40 h. The mixture was then filtered through a short pad of Celite that was washed with EtOAc (30 mL). The combined organic layers were concentrated under reduced pressure and purified by flash column chromatography [silica gel (100–200 mesh), 20% EtOAc–hexane] to give the corresponding saturated compound as a colorless oil; yield: (202 mg, 58%). Diphenylphosphoryl chloride (30 μl, 0.11 mmol) was added slowly to a solution of the saturated compound (50 mg, 0.055 mmol) in anhyd pyridine (5 mL) at 0 °C under argon, and the mixture was stirred at rt for 48 h. The reaction was quenched with ice–water, and the mixture was extracted with EtOAc (20 mL). The combined organic layers were washed successively with ice–water, 1 N aq HCl, sat. aq NaHCO3, and brine, then dried (Na2SO4) and concentrated in vacuo. The residue was purified by column chromatography [silica gel (100–200 mesh), 15–20% EtOAc–hexane] to give compound 2 as a liquid; yield: 47 mg (72%); [α]D 25 +7 (c 0.8, CHCl3). IR (neat): 3302, 2931 2872, 1733, 1612, 1454, 1388, 1067, 993 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.42–7.05 (m, 12 H), 6.15 (s, 1 H), 4.64–4.46 (m, 1 H), 3.93 (dt, J = 13.0, 5.1 Hz, 4 H), 3.74–3.47 (m, 2 H), 2.62 (t, J = 7.5 Hz, 2 H), 1.77–1.66 (m, 5 H), 1.42–1.20 (m, 62 H), 0.89–0.86 (m, 15 H), 0.15–0.06 (m, 12 H). 13C NMR (75 MHz, CDCl3): δ = 158.0, 155.8, 151.0, 150.9, 150.8, 129.8, 125.3, 125.2, 120.4, 120.3, 120.2, 108.0, 107.6, 84.9, 84.8, 83.4, 78.6, 78.4, 77.4, 74.4, 74.3, 72.3, 37.4, 33.8, 32.1, 30.4, 30.3, 30.2, 29.9, 29.8, 29.8, 29.7, 29.6, 29.5, 29.3, 28.8, 28.7, 28.2, 27.0, 26.4, 26.1, 26.1, 25.9, 25.5, 25.2, 22.9, 18.4, 18.3, 14.3, 1.2, 0.2, –4.1, –4.2, –4.3, –4.4. HRMS (ESI): m/z [M + H + Na]+ calcd for C63H112NNaO11PSi2: 1169.7487; found: 1169.779.