Subscribe to RSS
DOI: 10.1055/a-1946-3230
S1-Leitlinie Long-/Post-COVID[*]
German S1 Guideline Long-/Post-COVIDZusammenfassung
Die Deutsche Gesellschaft für Pneumologie hat 2021 die AWMF S1-Leitlinie Long-/Post-COVID initiiert. In einem breiten interdisziplinären Ansatz wurde diese S1-Leitlinie basierend auf dem aktuellen Wissensstand gestaltet.
Die klinische Empfehlung beschreibt die aktuellen Long- bzw. Post-COVID-Symptome, diagnostische Ansätze und Therapien.
Neben der allgemeinen und konsentierten Einführung wurde ein fachspezifischer Zugang gewählt, der den aktuellen Wissensstand zusammenfasst.
Die Leitlinie hat einen explizit praktischen Anspruch und wird basierend auf dem aktuellen Wissenszugewinn vom Autorenteam weiterentwickelt und adaptiert.
Abstract
The German Society of Pneumology initiated 2021 the AWMF S1 guideline Long COVID/Post-COVID. In a broad interdisciplinary approach, this S1 guideline was designed based on the current state of knowledge.
The clinical recommendations describe current Long COVID/Post-COVID symptoms, diagnostic approaches, and therapies.
In addition to the general and consensus introduction, a subject-specific approach was taken to summarize the current state of knowledge.
The guideline has an explicit practical claim and will be developed and adapted by the author team based on the current increase in knowledge.
* Die fachspezifischen Kapitel sind federführend von den Fachgesellschaften erstellt worden und spiegeln zum Teil die fachspezifische Sicht auf die Datenlage wider.
Publication History
Article published online:
07 December 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Nalbandian A, Sehgal K, Gupta A. et al. Post-acute COVID-19 syndrome. Nat Med 2021; 27: 601-615 DOI: 10.1038/s41591-021-01283-z.
- 2 Hansen T, Sevenius Nilsen T, Knapstad M. et al. Covid-fatigued? A longitudinal study of Norwegian older adults’ psychosocial well-being before and during early and later stages of the COVID-19 pandemic. Eur J Ageing 2021; 1-11 DOI: 10.1007/s10433-021-00648-0.
- 3 Förster C, Colombo MG, Wetzel AJ. et al. Persisting Symptoms After COVID-19-Prevalence and Risk Factors in a Population-Based Cohort. Dtsch Arztebl Int 2022; DOI: 10.3238/arztebl.m2022.0147.
- 4 Nguyen NN, Hoang VT, Dao TL. et al. Clinical patterns of somatic symptoms in patients suffering from post-acute long COVID: a systematic review. Eur J Clin Microbiol Infect Dis 2022; 41: 515-545 DOI: 10.1007/s10096-022-04417-4.
- 5 Alwan NA, Johnson L. Defining long COVID: Going back to the start. Med (N Y) 2021; 2: 501-504 DOI: 10.1016/j.medj.2021.03.003.
- 6 Schwab K, Schwitzer E, Qadir N. Postacute Sequelae of COVID-19 Critical Illness. Crit Care Clin 2022; 38: 455-472 DOI: 10.1016/j.ccc.2022.01.001.
- 7 Zollner A, Koch R, Jukic A. Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. Gastroenterology 2022; 163: 495-506.e8 DOI: 10.1053/j.gastro.2022.04.037.
- 8 Gaebler C, Wang Z, Lorenzi JCC. et al. Evolution of Antibody Immunity to SARS-CoV-2. bioRxiv 2021; DOI: 10.1101/2020.11.03.367391.
- 9 Hopkinson NS, Jenkins G, Hart N. COVID-19 and what comes after?. Thorax 2021 BMJ Publishing Group Ltd 2021; 76: 324-325 DOI: 10.1136/thoraxjnl-2020-216226.
- 10 Gupta A, Madhavan MV, Sehgal K. et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26: 1017-1032 DOI: 10.1038/s41591-020-0968-3.
- 11 Verger A, Kas A, Dudouet P. et al. Visual interpretation of brain hypometabolism related to neurological long COVID: a French multicentric experience. Eur J Nucl Med Mol Imaging 2022; 1-6 DOI: 10.1007/s00259-022-05753-5.
- 12 Douaud G, Lee S, Alfaro-Almagro F. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022; 604: 697-707 DOI: 10.1038/s41586-022-04569-5.
- 13 Salit IE. Post-infectious fatigue. Can Fam Physician 1987; 33: 1217-1219
- 14 Kuratsune H, Kondo K, Ikuta K. et al. [Chronic fatigue syndrome (CFS)]. Nihon Naika Gakkai Zasshi 2001; 90: 2431-2437
- 15 Hickie I, Davenport T, Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 2006; 333: 575 DOI: 10.1136/bmj.38933.585764.AE.
- 16 Ceravolo MG, Arienti C, de Sire A. et al. Rehabilitation and COVID-19: the Cochrane Rehabilitation 2020 rapid living systematic review. Eur J Phys Rehabil Med 2020; 56: 642-651 DOI: 10.23736/S1973-9087.20.06501-6.
- 17 Soriano JB, Murthy S, Marshall JC. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 2022; 22: e102-e107 DOI: 10.1016/S1473-3099(21)00703-9.
- 18 Stallmach A, Kesselmeier M, Bauer M. et al. Comparison of fatigue, cognitive dysfunction and psychological disorders in post-COVID patients and patients after sepsis: is there a specific constellation?. Infection 2022; 50: 661-669 DOI: 10.1007/s15010-021-01733-3.
- 19 Seessle J, Waterboer T, Hippchen T. et al. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin Infect Dis 2022; 74: 1191-1198 DOI: 10.1093/cid/ciab611.
- 20 Lund LC, Hallas J, Nielsen H. et al. Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: a Danish population-based cohort study. Lancet Infect Dis 2021; 21: 1373-1382 DOI: 10.1016/S1473-3099(21)00211-5.
- 21 Antonelli M, Pujol JC, Spector TD. et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 2022; 399: 2263-2264 DOI: 10.1016/S0140-6736(22)00941-2.
- 22 Matta J, Wiernik E, Robineau O. et al. Association of Self-reported COVID-19 Infection and SARS-CoV-2 Serology Test Results With Persistent Physical Symptoms Among French Adults During the COVID-19 Pandemic. JAMA Intern Med 2022; 182: 19-25 DOI: 10.1001/jamainternmed.2021.6454.
- 23 Wygrecka M, Birnhuber A, Seeliger B. et al. Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19. Blood Adv 2022; 6: 1074-1087 DOI: 10.1182/bloodadvances.2021004816.
- 24 Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med 2022; 28: 1461-1467
- 25 Ayoubkhani D, Bermingham C, Pouwels KB. et al. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 2022; 377: e069676
- 26 Sivan M, Greenhalgh T, Milne R. et al. Are vaccines a potential treatment for long covid?. BMJ 2022; 377: e072117 DOI: 10.1136/bmj.o988.
- 27 Impfkommission. Beschluss der STIKO zur 20. Aktualisierung der COVID-19-Impfempfehlung. 2022
- 28 Klok FA, Boon G, Barco S. et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J 2020; 56: 2001494 DOI: 10.1183/13993003.01494-2020.
- 29 Machado FVC, Meys R, Delbressine JM. et al. Construct validity of the Post-COVID-19 Functional Status Scale in adult subjects with COVID-19. Health Qual Life Outcomes 2021; 19: 40 DOI: 10.1186/s12955-021-01691-2.
- 30 Carmo A, Pereira-Vaz J, Mota V. et al. Clearance and persistence of SARS-CoV-2 RNA in patients with COVID-19. J Med Virol 2020; 92: 2227-2231 DOI: 10.1002/jmv.26103.
- 31 Kandetu TB, Dziuban EJ, Sikuvi K. et al. Persistence of Positive RT-PCR Results for Over 70 Days in Two Travelers with COVID-19. Disaster Med Public Health Prep 2020; 1-2 DOI: 10.1017/dmp.2020.450.
- 32 Wang X, Huang K, Jiang H. et al. Long-Term Existence of SARS-CoV-2 in COVID-19 Patients: Host Immunity, Viral Virulence, and Transmissibility. Virol Sin 2020; 35: 793-802 DOI: 10.1007/s12250-020-00308-0.
- 33 Reuken PA, Stallmach A, Pletz MW. et al. Severe clinical relapse in an immunocompromised host with persistent SARS-CoV-2 infection. Leukemia 2021; 35: 920-923 DOI: 10.1038/s41375-021-01175-8.
- 34 Hirotsu Y, Maejima M, Shibusawa M. et al. Analysis of a persistent viral shedding patient infected with SARS-CoV-2 by RT-qPCR, FilmArray Respiratory Panel v2.1, and antigen detection. J Infect Chemother 2021; 27: 406-409 DOI: 10.1016/j.jiac.2020.10.026.
- 35 Park SK, Lee CW, Park DI. et al. Detection of SARS-CoV-2 in Fecal Samples From Patients With Asymptomatic and Mild COVID-19 in Korea. Clin Gastroenterol Hepatol 2021; 19: 1387-13942 e138. DOI: 10.1016/j.cgh.2020.06.005.
- 36 Karlsson AC, Humbert M, Buggert M. The known unknowns of T cell immunity to COVID-19. Sci Immunol 2020; 5: eabe8063 DOI: 10.1126/sciimmunol.abe8063.
- 37 Su Y, Yuan D, Chen DG. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022; 185: 881-895 e820. DOI: 10.1016/j.cell.2022.01.014.
- 38 Kazemian N, Kao D, Pakpour S. Fecal Microbiota Transplantation during and Post-COVID-19 Pandemic. Int J Mol Sci 2021; 22: 3004 DOI: 10.3390/ijms22063004.
- 39 Zuo T, Zhan H, Zhang F. et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology 2020; 159: 1302-1310 e1305. DOI: 10.1053/j.gastro.2020.06.048.
- 40 Zuo T, Zhang F, Lui GCY. et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020; 159: 944-955 e948. DOI: 10.1053/j.gastro.2020.05.048.
- 41 Phetsouphanh C, Darley DR, Wilson DB. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 2022; 23: 210-216 DOI: 10.1038/s41590-021-01113-x.
- 42 Zuo Y, Estes SK, Ali RA. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020; 12: eabd3876 DOI: 10.1126/scitranslmed.abd3876.
- 43 Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 2008; 4: 491-498 DOI: 10.1038/ncprheum0895.
- 44 Guo Q, Wang Y, Xu D. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6: 15 DOI: 10.1038/s41413-018-0016-9.
- 45 Liu R, Wang Y, Li J. et al. Decreased T cell populations contribute to the increased severity of COVID-19. Clin Chim Acta 2020; 508: 110-114 DOI: 10.1016/j.cca.2020.05.019.
- 46 Hu F, Chen F, Ou Z. et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol Immunol 2020; 17: 1119-1125 DOI: 10.1038/s41423-020-00550-2.
- 47 Liu B, Han J, Cheng X. et al. Reduced numbers of T cells and B cells correlates with persistent SARS-CoV-2 presence in non-severe COVID-19 patients. Sci Rep 2020; 10: 17718 DOI: 10.1038/s41598-020-73955-8.
- 48 Mandal S, Barnett J, Brill SE. et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021; 76: 396-398 DOI: 10.1136/thoraxjnl-2020-215818.
- 49 Zhao YM, Shang YM, Song WB. et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine 2020; 25: 100463 DOI: 10.1016/j.eclinm.2020.100463.
- 50 Townsend L, Dyer AH, Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One 2020; 15: e0240784 DOI: 10.1371/journal.pone.0240784.
- 51 Natarajan A, Zlitni S, Brooks EF. et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y) 2022; DOI: 10.1016/j.medj.2022.04.001.
- 52 DEGAM. S3-Leitlinie Müdigkeit der DEGAM 2020. Available from: https://www.degam.de/files/Inhalte/Leitlinien-Inhalte/Dokumente/DEGAM-S3-Leitlinien/053-002_Leitlinie%20Muedigkeit/Aktuelle%20Fassung%202018/053-002l_LL_Muedigkeit_180423_online22-05-18.pdf
- 53 DEGAM. S3-Leitlinie akuter Schwindel der DEGAM 2016. Available from: https://www.degam.de/files/Inhalte/Leitlinien-Inhalte/Dokumente/DEGAM-S3-Leitlinien/053-018_Akuter%20Schwindel%20in%20der%20Hausarztpraxis/053-018k_Akuter%20Schwindel_redakt_170209.pdf
- 54 DEGAM. S3-Leitlinie Husten der DEGAM 2021. Available from: https://www.degam.de/files/Inhalte/Leitlinien-Inhalte/Dokumente/DEGAM-S3-Leitlinien/053-013_Akuter%20und%20chronischer%20Husten/053-013k_S3_akuter%20und%20chronischer%20Husten%20DEGAM_final.pdf
- 55 DEGAM. Leitlinie Schutz vor Über- und Unterversorgung – gemeinsam entscheiden der DEGAM. Available from: https://www.degam.de/files/Inhalte/Leitlinien-Inhalte/Dokumente/DEGAM-S2-Leitlinien/053-045%20Schutz%20vor%20Ueber-und%20Unterversorgung/Publikationsdokumente/053-045k_DEGAM%20LL%20Schutz%20vor%20U%CC%88berUnterversorgung%2024-06-2021.pdf
- 56 Nacul L, Authier FJ, Scheibenbogen C. et al. European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (EUROMENE): Expert Consensus on the Diagnosis, Service Provision, and Care of People with ME/CFS in Europe. Medicina (Kaunas) 2021; 57: 510 DOI: 10.3390/medicina57050510.
- 57 NICE. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management. 2021 Available from: https://www.nice.org.uk/guidance/ng206/resources/myalgic-encephalomyelitis-or-encephalopathychronic-fatigue-syndrome-diagnosis-and-management-pdf-66143718094021
- 58 Mitchell L. COVID in the older adult. 2020 Available from: https://www.bgs.org.uk/sites/default/files/content/attachment/2020-06-02/COVID19intheolderadultposterFINAL.pdf
- 59 Available from: https://cfc.charite.de/fileadmin/user_upload/microsites/kompetenzzentren/cfc/Landing_Page/Kanadische_Kriterien_mitAuswertung.pdf
- 60 Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA 2015; 313: 1101-1102
- 61 Carruthers BM, Jain AK, De Meirleir KL. et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Chronic Fatigue Syndrome 2003; 11: 7-115 DOI: 10.1300/J092v11n01_02.
- 62 Rowe PC, Underhill RA, Friedman KJ. et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Diagnosis and Management in Young People: A Primer. Frontiers in Pediatrics 2017; 5: 121 DOI: 10.3389/fped.2017.00121.
- 63 Huang C, Huang L, Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397: 220-232 DOI: 10.1016/S0140-6736(20)32656-8.
- 64 Stavem K, Ghanima W, Olsen MK. et al. Prevalence and Determinants of Fatigue after COVID-19 in Non-Hospitalized Subjects: A Population-Based Study. Int J Environ Res Public Health 2021; 18: 2030 DOI: 10.3390/ijerph18042030.
- 65 Zimmermann P, Pittet LF, Curtis N. How common is long COVID in children and adolescents?. Pediatr Infect Dis J 2021; 40: e482
- 66 Izquierdo-Pujol J, Moron-Lopez S, Dalmau J. et al. Post COVID-19 Condition in Children and Adolescents: An Emerging Problem. Front Pediatr 2022; 10: 894204 DOI: 10.3389/fped.2022.894204.
- 67 Basta F, Margiotta DPE, Vadacca M. et al. Is fatigue a cause of work disability in systemic lupus erythematosus? Results from a systematic literature review. Eur Rev Med Pharmacol Sci 2018; 22: 4589-4597 DOI: 10.26355/eurrev_201807_15516.
- 68 Arnaud L, Gavand PE, Voll R. et al. Predictors of fatigue and severe fatigue in a large international cohort of patients with systemic lupus erythematosus and a systematic review of the literature. Rheumatology (Oxford) 2019; 58: 987-996 DOI: 10.1093/rheumatology/key398.
- 69 Unger ER, Lin JS, Brimmer DJ. et al. CDC Grand Rounds: Chronic Fatigue Syndrome – Advancing Research and Clinical Education. MMWR Morb Mortal Wkly Rep 2016; 65: 1434-1438 DOI: 10.15585/mmwr.mm655051a4.
- 70 Komaroff AL, Bateman L. Will COVID-19 Lead to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome?. Front Med (Lausanne) 2020; 7: 606824 DOI: 10.3389/fmed.2020.606824.
- 71 Penner IK, Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nat Rev Neurol 2017; 13: 662-675 DOI: 10.1038/nrneurol.2017.117.
- 72 Raman B, Cassar MP, Tunnicliffe EM. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 2021; 31: 100683 DOI: 10.1016/j.eclinm.2020.100683.
- 73 Stussman B, Williams A, Snow J. et al. Characterization of Post-exertional Malaise in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol 2020; 11: 1025 DOI: 10.3389/fneur.2020.01025.
- 74 Nath A. Long-Haul COVID. Neurology 2020; 95: 559-560 DOI: 10.1212/WNL.0000000000010640.
- 75 Rudroff T, Fietsam AC, Deters JR. et al. Post-COVID-19 Fatigue: Potential Contributing Factors. Brain Sci 2020; 10: 1012 DOI: 10.3390/brainsci10121012.
- 76 Merad M, Blish CA, Sallusto F. et al. The immunology and immunopathology of COVID-19. Science 2022; 375: 1122-1127 DOI: 10.1126/science.abm8108.
- 77 Cotler J, Holtzman C, Dudun C. et al. A Brief Questionnaire to Assess Post-Exertional Malaise. Diagnostics (Basel) 2018; 8 DOI: 10.3390/diagnostics8030066.
- 78 Holtzman CS, Bhatia S, Cotler J. et al. Assessment of Post-Exertional Malaise (PEM) in Patients with Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS): A Patient-Driven Survey. Diagnostics (Basel) 2019; 9: 26 DOI: 10.3390/diagnostics9010026.
- 79 Jäkel B, Kedor C, Grabowski P. et al. Hand grip strength and fatigability: correlation with clinical parameters and diagnostic suitability in ME/CFS. J Transl Med 2021; 19: 159 DOI: 10.1186/s12967-021-02774-w.
- 80 DVGS. Bewegung und körperliches Training nach COVID-19. Available from: https://dvgs.de/images/2022/06/DVGS_09_Long_Covid_Factsheet_.pdf
- 81 Lopez-Leon S, Wegman-Ostrosky T, Perelman C. et al. More Than 50 Long-Term Effects of COVID-19: A Systematic Review and Meta-Analysis. Res Sq 2021; rs.3.rs-266574 DOI: 10.21203/rs.3.rs-266574/v1.
- 82 Clauw DJ, Hauser W, Cohen SP. et al. Considering the potential for an increase in chronic pain after the COVID-19 pandemic. Pain 2020; 161: 1694-1697 DOI: 10.1097/j.pain.0000000000001950.
- 83 Derksen V, Kissel T, Lamers-Karnebeek FBG. et al. Onset of rheumatoid arthritis after COVID-19: coincidence or connected?. Ann Rheum Dis 2021; 80: 1096-1098 DOI: 10.1136/annrheumdis-2021-219859.
- 84 Uygun O, Ertas M, Ekizoglu E. et al. Headache characteristics in COVID-19 pandemic-a survey study. J Headache Pain 2020; 21: 121 DOI: 10.1186/s10194-020-01188-1.
- 85 Criado PR, Abdalla BMZ, de Assis IC. et al. Are the cutaneous manifestations during or due to SARS-CoV-2 infection/COVID-19 frequent or not? Revision of possible pathophysiologic mechanisms. Inflamm Res 2020; 69: 745-756 DOI: 10.1007/s00011-020-01370-w.
- 86 Silva Andrade B, Siqueira S, de Assis Soares WR. et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021; 13: 700 DOI: 10.3390/v13040700.
- 87 Peiris S, Mesa H, Aysola A. et al. Pathological findings in organs and tissues of patients with COVID-19: A systematic review. PLoS One 2021; 16: e0250708 DOI: 10.1371/journal.pone.0250708.
- 88 Esen-Salman K, Akin-Cakici O, Kardes S. et al. Public interest in dermatologic symptoms, conditions, treatments, and procedures during the COVID-19 pandemic: Insights from Google Trends. Dermatol Ther 2021; 34: e14895 DOI: 10.1111/dth.14895.
- 89 Reinhart M, Metze D, Braun SA. [Skin manifestations of COVID-19 and after COVID-19 vaccination]. Hautarzt 2022; 1-7 DOI: 10.1007/s00105-022-04991-w.
- 90 Kashetsky N, Mukovozov IM, Bergman J. Chilblain-Like Lesions (CLL) Associated With COVID-19 („COVID Toes“): A Systematic Review. J Cutan Med Surg 2021; 25: 627-633 DOI: 10.1177/12034754211004575.
- 91 Baeck M, Herman A. COVID toes: where do we stand with the current evidence?. Int J Infect Dis 2021; 102: 53-55 DOI: 10.1016/j.ijid.2020.10.021.
- 92 Ionescu MA. COVID-19 skin lesions are rarely positive at RT-PCR test: the macrophage activation with vascular impact and SARS-CoV-2-induced cytokine storm. Int J Dermatol 2022; 61: 3-6 DOI: 10.1111/ijd.15749.
- 93 Yilmaz MM, Szabolcs MJ, Geskin LJ. et al. An Autopsy Review: „COVID Toes“. Am J Dermatopathol 2021; 43: 554-555 DOI: 10.1097/DAD.0000000000001827.
- 94 Zaladonis A, Huang S, Hsu S. COVID toes or pernio?. Clin Dermatol 2020; 38: 764-767 DOI: 10.1016/j.clindermatol.2020.06.002.
- 95 Garg S, Garg M, Prabhakar N. et al. Unraveling the mystery of Covid-19 cytokine storm: From skin to organ systems. Dermatol Ther 2020; 33: e13859 DOI: 10.1111/dth.13859.
- 96 Cazzato G, Foti C, Colagrande A. et al. Skin Manifestation of SARS-CoV-2: The Italian Experience. J Clin Med 2021; 10: 1566 DOI: 10.3390/jcm10081566.
- 97 Birlutiu V, Feiereisz AI, Oprinca G. et al. Cutaneous manifestations associated with anosmia, ageusia and enteritis in SARS-CoV-2 infection – A possible pattern? Observational study and review of the literature. Int J Infect Dis 2021; 107: 72-77 DOI: 10.1016/j.ijid.2021.04.058.
- 98 Kaplan N, Gonzalez E, Peng H. et al. Emerging importance of ACE2 in external stratified epithelial tissues. Mol Cell Endocrinol 2021; 529: 111260 DOI: 10.1016/j.mce.2021.111260.
- 99 Krajewski PK, Maj J, Szepietowski JC. Cutaneous Hyperaesthesia in SARS-CoV-2 Infection: Rare but not Unique Clinical Manifestation. Acta Derm Venereol 2021; 101: adv00366 DOI: 10.2340/00015555-3729.
- 100 Kendziora B, Guertler A, Stander L. et al. Evaluation of hand hygiene and onset of hand eczema after the outbreak of SARS-CoV-2 in Munich. Eur J Dermatol 2020; 30: 668-673 DOI: 10.1684/ejd.2020.3923.
- 101 Oaklander AL, Mills AJ, Kelley M. et al. Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID. Neurol Neuroimmunol Neuroinflamm 2022; 9: e1146 DOI: 10.1212/NXI.0000000000001146.
- 102 Müller-Ramos P, Ianhez M, Silva de Castro CC. et al. Post-COVID-19 hair loss: prevalence and associated factors among 5,891 patients. Int J Dermatol 2022; 61: e162-e164 DOI: 10.1111/ijd.16041.
- 103 Lee J, Kwon KH. Changes in the use of cosmetics worldwide due to increased use of masks in the coronavirus disease-19 pandemic. J Cosmet Dermatol 2022; 21: 2708-2712 DOI: 10.1111/jocd.14515.
- 104 Park SR, Han J, Yeon YM. et al. Long-term effects of face masks on skin characteristics during the COVID-19 pandemic. Skin Res Technol 2022; 28: 153-161 DOI: 10.1111/srt.13107.
- 105 Gisondi P, Piaserico S, Bordin C. et al. The safety profile of hydroxychloroquine: major cutaneous and extracutaneous adverse events. Clin Exp Rheumatol 2021; 39: 1099-1107
- 106 Martinez-Lopez A, Cuenca-Barrales C, Montero-Vilchez T. et al. Review of adverse cutaneous reactions of pharmacologic interventions for COVID-19: A guide for the dermatologist. J Am Acad Dermatol 2020; 83: 1738-1748 DOI: 10.1016/j.jaad.2020.08.006.
- 107 Zahedi Niaki O, Anadkat MJ, Chen ST. et al. Navigating immunosuppression in a pandemic: A guide for the dermatologist from the COVID Task Force of the Medical Dermatology Society and Society of Dermatology Hospitalists. J Am Acad Dermatol 2020; 83: 1150-1159 DOI: 10.1016/j.jaad.2020.06.051.
- 108 Landeck L, Sabat R, Ghoreschi K. et al. Immunotherapy in psoriasis. Immunotherapy 2021; 13: 605-619 DOI: 10.2217/imt-2020-0292.
- 109 Thanou A, Sawalha AH. SARS-CoV-2 and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2021; 23: 8 DOI: 10.1007/s11926-020-00973-w.
- 110 Peters EMJ, Muller Y, Snaga W. et al. Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress. PLoS One 2017; 12: e0175904 DOI: 10.1371/journal.pone.0175904.
- 111 Peyravian N, Deo S, Daunert S. et al. The Inflammatory Aspect of Male and Female Pattern Hair Loss. J Inflamm Res 2020; 13: 879-881 DOI: 10.2147/JIR.S275785.
- 112 Trüeb RM, Dutra Rezende H, Gavazzoni Dias MFR. What can the hair tell us about COVID‐19?. Experimental Dermatology 2021; 30: 288-290
- 113 WHO. Multiple definitions of infertility. WHO; 2020
- 114 Barber E, Kovo M, Leytes S. et al. Evaluation of SARS-CoV-2 in the Vaginal Secretions of Women with COVID-19: A Prospective Study. J Clin Med 2021; 10: 2735 DOI: 10.3390/jcm10122735.
- 115 Safrai M, Herzberg S, Imbar T. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online 2022; 44: 685-688 DOI: 10.1016/j.rbmo.2022.01.008.
- 116 Schwartz A, Yogev Y, Zilberman A. et al. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vaginal swabs of women with acute SARS-CoV-2 infection: a prospective study. BJOG 2021; 128: 97-100 DOI: 10.1111/1471-0528.16556.
- 117 Kumar N, Bhatia V. Maternal SARS-CoV-2 Infection, Its Vertical Transmission and Impact on Overall Perinatal Outcomes: A Narrative Review. Curr Pediatr Rev 2021; 18: 103-109 DOI: 10.2174/1573396317666211124095020.
- 118 Longardt AC, Winkler VP, Pecks U. [SARS-CoV-2 and Perinatal Aspects]. Z Geburtshilfe Neonatol 2020; 224: 181-186 DOI: 10.1055/a-1192-7437.
- 119 Ding T, Wang T, Zhang J. et al. Analysis of Ovarian Injury Associated With COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front Med (Lausanne) 2021; 8: 635255 DOI: 10.3389/fmed.2021.635255.
- 120 Li K, Chen G, Hou H. et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod Biomed Online 2021; 42: 260-267 DOI: 10.1016/j.rbmo.2020.09.020.
- 121 Bentov Y, Beharier O, Moav-Zafrir A. et al. Ovarian follicular function is not altered by SARS-Cov-2 infection or BNT162b2 mRNA Covid-19 vaccination. Hum Reprod 2021; 36: 2506-2513 DOI: 10.1093/humrep/deab182.
- 122 Orvieto R, Segev-Zahav A, Aizer A. Does COVID-19 infection influence patients’ performance during IVF-ET cycle?: an observational study. Gynecol Endocrinol 2021; 37: 895-897
- 123 Wang M, Yang Q, Ren X. et al. Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: A retrospective cohort study. EClinicalMedicine 2021; 38: 101013 DOI: 10.1016/j.eclinm.2021.101013.
- 124 Herrero Y, Pascuali N, Velazquez C. et al. SARS-CoV-2 infection negatively affects ovarian function in ART patients. Biochim Biophys Acta Mol Basis Dis 2022; 1868: 166295 DOI: 10.1016/j.bbadis.2021.166295.
- 125 Youngster M, Avraham S, Yaakov O. et al. IVF under COVID-19: treatment outcomes of fresh ART cycles. Hum Reprod 2022; 37: 947-953 DOI: 10.1093/humrep/deac043.
- 126 Wesselink AK, Hatch EE, Rothman KJ. et al. A prospective cohort study of COVID-19 vaccination, SARS-CoV-2 infection, and fertility. Am J Epidemiol 2022; 191: 1383-1395 DOI: 10.1093/aje/kwac011.
- 127 Gonzalez Rodriguez L, Oreja Cuesta AB, Pardo Pumar MI. et al. SARS-CoV-2 infection in early first-trimester miscarriages: a prospective observational study. Reprod Biomed Online 2022; 44: 127-130 DOI: 10.1016/j.rbmo.2021.09.010.
- 128 Pecks U, Kuschel B, Mense L. et al. Pregnancy and SARS-CoV-2 Infection in Germany-the CRONOS Registry. Dtsch Arztebl Int 2020; 117: 841-842 DOI: 10.3238/arztebl.2020.0841.
- 129 Allotey J, Stallings E, Bonet M. et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 2020; 370: m3320 DOI: 10.1136/bmj.m3320.
- 130 Takla A, Matysiak-Klose D, Bogdan C. et al. Empfehlung und Begründung der STIKO zur Impfung gegen COVID-19 von Schwangeren und Stillenden. 2021
- 131 Damm M, Schmitl L, Müller CA. et al. Diagnostik und Therapie von Riechstörungen. HNO 2019; 67: 274-281
- 132 Haehner A, Draf J, Drager S. et al. Predictive Value of Sudden Olfactory Loss in the Diagnosis of COVID-19. ORL J Otorhinolaryngol Relat Spec 2020; 82: 175-180 DOI: 10.1159/000509143.
- 133 La Torre G, Massetti AP, Antonelli G. et al. Anosmia and Ageusia as Predictive Signs of COVID-19 in Healthcare Workers in Italy: A Prospective Case-Control Study. J Clin Med 2020; 9: 2870 DOI: 10.3390/jcm9092870.
- 134 Parma V, Ohla K, Veldhuizen MG. et al. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chem Senses 2020; 45: 609-622 DOI: 10.1093/chemse/bjaa041.
- 135 Whitcroft KL, Hummel T. Clinical Diagnosis and Current Management Strategies for Olfactory Dysfunction: A Review. JAMA Otolaryngol Head Neck Surg 2019; 145: 846-853 DOI: 10.1001/jamaoto.2019.1728.
- 136 Zou LQ, Linden L, Cuevas M. et al. Self-reported mini olfactory questionnaire (Self-MOQ): A simple and useful measurement for the screening of olfactory dysfunction. Laryngoscope 2020; 130: E786-E790 DOI: 10.1002/lary.28419.
- 137 Hummel T, Sekinger B, Wolf SR. et al. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 1997; 22: 39-52 DOI: 10.1093/chemse/22.1.39.
- 138 Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav 1984; 32: 489-502 DOI: 10.1016/0031-9384(84)90269-5.
- 139 Dietz A, Haxel B, Müller A. et al. Handlungsempfehlung-en DGHNO-KHC und BVHNO für die HNO-Elektiv-/nicht notfallmäßige Behandlung zu Corona-Zeiten. Laryngorhinootologie 2020; 99: 365-369
- 140 Vaira LA, Salzano G, Petrocelli M. et al. Validation of a self-administered olfactory and gustatory test for the remotely evaluation of COVID-19 patients in home quarantine. Head Neck 2020; 42: 1570-1576 DOI: 10.1002/hed.26228.
- 141 Spoldi C, Castellani L, Pipolo C. et al. Isolated olfactory cleft involvement in SARS-CoV-2 infection: prevalence and clinical correlates. Eur Arch Otorhinolaryngol 2021; 278: 557-560 DOI: 10.1007/s00405-020-06165-7.
- 142 Chetrit A, Lechien JR, Ammar A. et al. Magnetic resonance imaging of COVID-19 anosmic patients reveals abnormalities of the olfactory bulb: Preliminary prospective study. J Infect 2020; 81: 816-846 DOI: 10.1016/j.jinf.2020.07.028.
- 143 Le Guennec L, Devianne J, Jalin L. et al. Orbitofrontal involvement in a neuroCOVID-19 patient. Epilepsia 2020; 61: e90-e94 DOI: 10.1111/epi.16612.
- 144 Isenmann S, Haehner A, Hummel T. Störungen der Chemosensorik bei Covid-19: Pathomechanismen und klinische Relevanz. Fortschr Neurol Psychiatr 2021; 89: 281-288
- 145 Damm M, Hüttenbrink KB, Hummel T. et al. AWMF Leitlinien „Riech- und Schmeckstörungen“. https://wwwawmforg/uploads/tx_szleitlinien/017-050l_S2k_Riech-und-Schmeckst%C3%B6rungen_2021-04-abgelaufenpdf 2017
- 146 Huart C, Philpott CM, Altundag A. et al. Systemic corticosteroids in coronavirus disease 2019 (COVID-19)-related smell dysfunction: an international view. Int Forum Allergy Rhinol 2021; 11: 1041-1046 DOI: 10.1002/alr.22788.
- 147 Hong SC, Holbrook EH, Leopold DA. et al. Distorted olfactory perception: a systematic review. Acta Otolaryngol 2012; 132 (Suppl. 01) S27-S31 DOI: 10.3109/00016489.2012.659759.
- 148 Croy I, Nordin S, Hummel T. Olfactory disorders and quality of life--an updated review. Chem Senses 2014; 39: 185-194 DOI: 10.1093/chemse/bjt072.
- 149 Xie Y, Xu E, Bowe B. et al. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022; 28: 583-590 DOI: 10.1038/s41591-022-01689-3.
- 150 Tazare J, Walker AJ, Tomlinson L. et al. Rates of serious clinical outcomes in survivors of hospitalisation with COVID-19: a descriptive cohort study within the OpenSAFELY platform. medRxiv 2021; DOI: 10.1101/2021.01.22.21250304.
- 151 Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021; 594: 259-264 DOI: 10.1038/s41586-021-03553-9.
- 152 Siddiq MM, Chan AT, Miorin L. et al. Physiology of cardiomyocyte injury in COVID-19. medRxiv 2020; DOI: 10.1101/2020.11.10.20229294.
- 153 Vijayakumar B, Tonkin J, Shah PL. Persistent abnormalities on echocardiography post hospitalization for COVID-19. European Respiratory Journal 2021; 58: OA86
- 154 Thodeti S, Lattanzio DS, Drenic D. et al. Initial COVID-19 symptoms are not predictive of post-COVID recovery inflammatory heart disease detected by cardiac MRI. European Heart Journal 2021; DOI: 10.1093/eurheartj/ehab1724.0241.
- 155 Elliott N, Martin R, Heron N. et al. Infographic. Graduated return to play guidance following COVID-19 infection. Br J Sports Med 2020; 54: 1174-1175 DOI: 10.1136/bjsports-2020-102637.
- 156 Collet JP, Thiele H. The ‘Ten Commandments’ for the 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European Heart Journal 2020; 41: 3495-3497
- 157 Farkouh ME, Stone GW, Lala A. et al. Anticoagulation in Patients With COVID-19: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79: 917-928 DOI: 10.1016/j.jacc.2021.12.023.
- 158 Podzolkov VI, Bragina AE, Tarzimanova AI. et al. Post-COVID Syndrome and tachycardia: Theoretical base and treatment experience. Rational Pharmacotherapy in Cardiology 2021; 17: 256-262
- 159 Puntmann VO, Carerj ML, Wieters I. et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 1265-1273 DOI: 10.1001/jamacardio.2020.3557.
- 160 Kotecha T, Knight DS, Razvi Y. et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J 2021; 42: 1866-1878 DOI: 10.1093/eurheartj/ehab075.
- 161 Petersen EL, Gossling A, Adam G. et al. Multi-organ assessment in mainly non-hospitalized individuals after SARS-CoV-2 infection: The Hamburg City Health Study COVID programme. Eur Heart J 2022; 43: 1124-1137 DOI: 10.1093/eurheartj/ehab914.
- 162 Premraj L, Kannapadi NV, Briggs J. et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci 2022; 434: 120162 DOI: 10.1016/j.jns.2022.120162.
- 163 Berlit P. Neurologische Manifestationen, S1-Leitlinie. www.dgn.org/leitlinien Stand: 3.4.2022.
- 164 Kim JW, Abdullayev N, Neuneier J. et al. Post-COVID-19 encephalomyelitis. Neurol Res Pract 2021; 3: 18 DOI: 10.1186/s42466-021-00113-4.
- 165 Paone G, Serpilli M, Girardi E. et al. The combination of a smoking cessation programme with rehabilitation increases stop-smoking rate. J Rehabil Med 2008; 40: 672-677 DOI: 10.2340/16501977-0234.
- 166 Odozor CU, Kannampallil T, Ben AbdallahA. et al. Post-acute sensory neurological sequelae in patients with SARS-CoV-2 infection: the COVID-PN observational cohort study. Pain 2022; DOI: 10.1097/j.pain.0000000000002639.
- 167 Alemanno F, Houdayer E, Parma A. et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS One 2021; 16: e0246590 DOI: 10.1371/journal.pone.0246590.
- 168 Pistarini C, Fiabane E, Houdayer E. et al. Cognitive and emotional disturbances due to COVID-19: an exploratory study in the rehabilitation setting. Frontiers in Neurology 2021; 12: 500
- 169 Kandemirli SG, Altundag A, Yildirim D. et al. Olfactory Bulb MRI and Paranasal Sinus CT Findings in Persistent COVID-19 Anosmia. Acad Radiol 2021; 28: 28-35 DOI: 10.1016/j.acra.2020.10.006.
- 170 Hosp JA, Dressing A, Blazhenets G. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 2021; 144: 1263-1276 DOI: 10.1093/brain/awab009.
- 171 Davis HE, Assaf GS, McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. Available at SSRN 3820561 2021
- 172 Wong-Chew RM, Rodríguez Cabrera EX, Rodríguez Valdez CA. et al. Symptom cluster analysis of long COVID-19 in patients discharged from the Temporary COVID-19 Hospital in Mexico City. Ther Adv Infect Dis 2022; 9 20499361211069264. DOI: 10.1177/20499361211069264.
- 173 Ceban F, Ling S, Lui LMW. et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav Immun 2022; 101: 93-135 DOI: 10.1016/j.bbi.2021.12.020.
- 174 Hampshire A, Trender W, Chamberlain S. et al. Cognitive deficits in people who have recovered from COVID-19. eClinical Medicine 2021; 39 DOI: 10.1016/j.eclinm.2021.101044.
- 175 Peper M, Schott J. Neuropsychologische Störungen bei coronavirusassoziierten Erkrankungen. Zeitschrift für Neuropsychologie 2021; 32 DOI: 10.1024/1016-264X/a000342.
- 176 Blomberg B, Mohn KG-I, Brokstad KA. et al. Long COVID in a prospective cohort of home-isolated patients. Nature Medicine 2021; 27: 1607-1613
- 177 García-Sánchez C, Calabria M, Grunden N. et al. Neuropsychological deficits in patients with cognitive complaints after COVID‐19. Brain and Behavior 2022; 12: e2508
- 178 Liu Y-H, Chen Y, Wang Q-H. et al. One-Year Trajectory of Cognitive Changes in Older Survivors of COVID-19 in Wuhan, China: A Longitudinal Cohort Study. JAMA neurology; 2022
- 179 Sheehy LM. Considerations for postacute rehabilitation for survivors of COVID-19. JMIR public health and surveillance 2020; 6: e19462
- 180 Guo P, Benito Ballesteros A, Yeung SP. et al. COVCOG 2: Cognitive and Memory Deficits in Long COVID: A Second Publication From the COVID and Cognition Study. Frontiers in aging neuroscience 2022; 204
- 181 Loon SC, Teoh SC, Oon LL. et al. The severe acute respiratory syndrome coronavirus in tears. Br J Ophthalmol 2004; 88: 861-863 DOI: 10.1136/bjo.2003.035931.
- 182 Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 2020; 395: e39 DOI: 10.1016/s0140-6736(20)30313-5.
- 183 Raboud J, Shigayeva A, McGeer A. et al. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLoS One 2010; 5: e10717 DOI: 10.1371/journal.pone.0010717.
- 184 Xia J, Tong J, Liu M. et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol 2020; 92: 589-594 DOI: 10.1002/jmv.25725.
- 185 Acharya S, Diamond M, Anwar S. et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases 2020; 21: e00867 DOI: 10.1016/j.idcr.2020.e00867.
- 186 Araujo-Silva CA, Marcos AAA, Marinho PM. et al. Presumed SARS-CoV-2 Viral Particles in the Human Retina of Patients With COVID-19. JAMA Ophthalmol 2021; 139: 1015-1021 DOI: 10.1001/jamaophthalmol.2021.2795.
- 187 Montesel A, Bucolo C, Mouvet V. et al. Case Report: Central Retinal Artery Occlusion in a COVID-19 Patient. Front Pharmacol 2020; 11: 588384 DOI: 10.3389/fphar.2020.588384.
- 188 Murchison AP, Sweid A, Dharia R. et al. Monocular visual loss as the presenting symptom of COVID-19 infection. Clin Neurol Neurosurg 2021; 201: 106440 DOI: 10.1016/j.clineuro.2020.106440.
- 189 Zhou L, Xu Z, Guerra J. et al. Expression of the SARS-CoV-2 Receptor ACE2 in Human Retina and Diabetes-Implications for Retinopathy. Invest Ophthalmol Vis Sci 2021; 62: 6 DOI: 10.1167/iovs.62.7.6.
- 190 Chin MS, Hooper LC, Hooks JJ. et al. Identification of α-fodrin as an autoantigen in experimental coronavirus retinopathy (ECOR). J Neuroimmunol 2014; 272: 42-50 DOI: 10.1016/j.jneuroim.2014.05.002.
- 191 Vinores SA, Wang Y, Vinores MA. et al. Blood-retinal barrier breakdown in experimental coronavirus retinopathy: association with viral antigen, inflammation, and VEGF in sensitive and resistant strains. J Neuroimmunol 2001; 119: 175-182 DOI: 10.1016/s0165-5728(01)00374-5.
- 192 Wang Y, Detrick B, Yu ZX. et al. The role of apoptosis within the retina of coronavirus-infected mice. Invest Ophthalmol Vis Sci 2000; 41: 3011-3018
- 193 Domínguez-Varela IA, Rodríguez-Gutiérrez LA, Morales-Mancillas NR. et al. COVID-19 and the eye: a review. Infect Dis (Lond) 2021; 53: 399-403 DOI: 10.1080/23744235.2021.1882697.
- 194 Jevnikar K, Jaki Mekjavic P, Vidovic Valentincic N. et al. An Update on COVID-19 Related Ophthalmic Manifestations. Ocul Immunol Inflamm 2021; 29: 684-689 DOI: 10.1080/09273948.2021.1896008.
- 195 Kumar KK, Sampritha UC, Prakash AA. et al. Ophthalmic manifestations in the COVID-19 clinical spectrum. Indian J Ophthalmol 2021; 69: 691-694 DOI: 10.4103/ijo.IJO_3037_20.
- 196 Nasiri N, Sharifi H, Bazrafshan A. et al. Ocular Manifestations of COVID-19: A Systematic Review and Meta-analysis. J Ophthalmic Vis Res 2021; 16: 103-112 DOI: 10.18502/jovr.v16i1.8256.
- 197 Soltani S, Tabibzadeh A, Zakeri A. et al. COVID-19 associated central nervous system manifestations, mental and neurological symptoms: a systematic review and meta-analysis. Rev Neurosci 2021; 32: 351-361 DOI: 10.1515/revneuro-2020-0108.
- 198 Ulhaq ZS, Soraya GV. The prevalence of ophthalmic manifestations in COVID-19 and the diagnostic value of ocular tissue/fluid. Graefes Arch Clin Exp Ophthalmol 2020; 258: 1351-1352 DOI: 10.1007/s00417-020-04695-8.
- 199 Scalinci SZ, Trovato Battagliola E. Conjunctivitis can be the only presenting sign and symptom of COVID-19. IDCases 2020; 20: e00774 DOI: 10.1016/j.idcr.2020.e00774.
- 200 Loffredo L, Pacella F, Pacella E. et al. Conjunctivitis and COVID-19: A meta-analysis. J Med Virol 2020; 92: 1413-1414 DOI: 10.1002/jmv.25938.
- 201 Wu P, Duan F, Luo C. et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol 2020; 138: 575-578 DOI: 10.1001/jamaophthalmol.2020.1291.
- 202 Danthuluri V, Grant MB. Update and Recommendations for Ocular Manifestations of COVID-19 in Adults and Children: A Narrative Review. Ophthalmol Ther 2020; 9: 853-875 DOI: 10.1007/s40123-020-00310-5.
- 203 Cheema M, Aghazadeh H, Nazarali S. et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol 2020; 55: e125-e129 DOI: 10.1016/j.jcjo.2020.03.003.
- 204 Sanjay S, Mutalik D, Gowda S. et al. „Post Coronavirus Disease (COVID-19) Reactivation of a Quiescent Unilateral Anterior Uveitis“. SN Compr Clin Med 2021; 3: 1843-1847 DOI: 10.1007/s42399-021-00985-2.
- 205 Soni A, Narayanan R, Tyagi M. et al. Acute Retinal Necrosis as a presenting ophthalmic manifestation in COVID 19 recovered patients. Ocul Immunol Inflamm 2021; 29: 722-725 DOI: 10.1080/09273948.2021.1938135.
- 206 Walinjkar JA, Makhija SC, Sharma HR. et al. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J Ophthalmol 2020; 68: 2572-2574 DOI: 10.4103/ijo.IJO_2575_20.
- 207 Gascon P, Briantais A, Bertrand E. et al. Covid-19-Associated Retinopathy: A Case Report. Ocul Immunol Inflamm 2020; 28: 1293-1297 DOI: 10.1080/09273948.2020.1825751.
- 208 Merkler AE, Parikh NS, Mir S. et al. Risk of Ischemic Stroke in Patients With Coronavirus Disease 2019 (COVID-19) vs Patients With Influenza. JAMA Neurol 2020; 77: 1-7 DOI: 10.1001/jamaneurol.2020.2730.
- 209 Otaif W, Al Somali AI, Al Habash A. Episcleritis as a possible presenting sign of the novel coronavirus disease: A case report. Am J Ophthalmol Case Rep 2020; 20: 100917 DOI: 10.1016/j.ajoc.2020.100917.
- 210 Méndez Mangana C, Barraquer Kargacin A, Barraquer RI. Episcleritis as an ocular manifestation in a patient with COVID-19. Acta Ophthalmol 2020; 98: e1056-e1057 DOI: 10.1111/aos.14484.
- 211 Feizi S, Meshksar A, Naderi A. et al. Anterior Scleritis Manifesting After Coronavirus Disease 2019: A Report of Two Cases. Cornea 2021; 40: 1204-1206 DOI: 10.1097/ico.0000000000002795.
- 212 de Souza EC, de Campos VE, Duker JS. Atypical unilateral multifocal choroiditis in a COVID-19 positive patient. Am J Ophthalmol Case Rep 2021; 22: 101034 DOI: 10.1016/j.ajoc.2021.101034.
- 213 Providência J, Fonseca C, Henriques F. et al. Serpiginous choroiditis presenting after SARS-CoV-2 infection: A new immunological trigger?. Eur J Ophthalmol 2022; 32: Np97-Np101 DOI: 10.1177/1120672120977817.
- 214 Tom ES, McKay KM, Saraf SS. Bilateral Ampiginous Choroiditis following Presumed SARS-CoV-2 Infection. Case Rep Ophthalmol Med 2021; 2021: 1646364 DOI: 10.1155/2021/1646364.
- 215 Sawalha K, Adeodokun S, Kamoga GR. COVID-19-Induced Acute Bilateral Optic Neuritis. J Investig Med High Impact Case Rep 2020; 8: 2324709620976018 DOI: 10.1177/2324709620976018.
- 216 Zhou S, Jones-Lopez EC, Soneji DJ. et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol 2020; 40: 398-402 DOI: 10.1097/wno.0000000000001049.
- 217 de Ruijter NS, Kramer G, Gons RAR. et al. Neuromyelitis optica spectrum disorder after presumed coronavirus (COVID-19) infection: A case report. Mult Scler Relat Disord 2020; 46: 102474 DOI: 10.1016/j.msard.2020.102474.
- 218 Cavalcanti DD, Raz E, Shapiro M. et al. Cerebral Venous Thrombosis Associated with COVID-19. AJNR Am J Neuroradiol 2020; 41: 1370-1376 DOI: 10.3174/ajnr.A6644.
- 219 Verkuil LD, Liu GT, Brahma VL. et al. Pseudotumor cerebri syndrome associated with MIS-C: a case report. Lancet 2020; 396: 532 DOI: 10.1016/s0140-6736(20)31725-6.
- 220 Belghmaidi S, Nassih H, Boutgayout S. et al. Third Cranial Nerve Palsy Presenting with Unilateral Diplopia and Strabismus in a 24-Year-Old Woman with COVID-19. Am J Case Rep 2020; 21: e925897 DOI: 10.12659/ajcr.925897.
- 221 Oliveira RMC, Santos DH, Olivetti BC. et al. Bilateral trochlear nerve palsy due to cerebral vasculitis related to COVID-19 infection. Arq Neuropsiquiatr 2020; 78: 385-386 DOI: 10.1590/0004-282x20200052.
- 222 Greer CE, Bhatt JM, Oliveira CA. et al. Isolated Cranial Nerve 6 Palsy in 6 Patients With COVID-19 Infection. J Neuroophthalmol 2020; 40: 520-522 DOI: 10.1097/wno.0000000000001146.
- 223 Coroneo MT, Collignon PJ. SARS-CoV-2: eye protection might be the missing key. Lancet Microbe 2021; 2: e173-e174 DOI: 10.1016/s2666-5247(21)00040-9.
- 224 Tang Y, Li C, Chen Y. et al. Effect of Intraocular Pressure on Aerosol Density Generated by Noncontact Tonometer Measurement. J Glaucoma 2020; 29: 1001-1005 DOI: 10.1097/ijg.0000000000001669.
- 225 [Anonym] Empfehlungen der Deutschen Ophthalmologischen Gesellschaft e. V. und des Berufsverbandes der Augenärzte Deutschlands e. V. zur Perimetrie während der SARS-CoV-2-Pandemie (Stand: 30. November 2020). https://www.dog.org/wp-content/uploads/2013/03/Empfehlungen_Perimetrie_COVID19_2020_11.pdf
- 226 National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. 2020 https://www.nice.org.uk/guidance/ng188
- 227 Kikkenborg Berg S, Palm P, Nygaard U. et al. Long COVID symptoms in SARS-CoV-2-positive children aged 0-14 years and matched controls in Denmark (LongCOVIDKidsDK): a national, cross-sectional study. Lancet Child Adolesc Health 2022; 6: 614-623 DOI: 10.1016/S2352-4642(22)00154-7.
- 228 Say D, Crawford N, McNab S. et al. Post-acute COVID-19 outcomes in children with mild and asymptomatic disease. Lancet Child Adolesc Health 2021; 5: e22-e23 DOI: 10.1016/S2352-4642(21)00124-3.
- 229 Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle NC. et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep 2022; 12: 9950 DOI: 10.1038/s41598-022-13495-5.
- 230 Blankenburg J, Wekenborg MK, Reichert J. et al. Mental Health of Adolescents in the Pandemic: Long-COVID-19 or Long-Pandemic Syndrome?. Available at SSRN 3844826 2021
- 231 Borch L, Holm M, Knudsen M. et al. Long COVID symptoms and duration in SARS-CoV-2 positive children – a nationwide cohort study. Eur J Pediatr 2022; 181: 1597-1607
- 232 Radtke T, Ulyte A, Puhan MA. et al. Long-term symptoms after SARS-CoV-2 infection in children and adolescents. Jama 2021; 326: 869-871
- 233 Stephenson T, Shafran R, De Stavola B. et al. Long COVID and the mental and physical health of children and young people: national matched cohort study protocol (the CLoCk study). BMJ open 2021; 11: e052838
- 234 Molteni E, Sudre CH, Canas LS. et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. The Lancet Child & Adolescent Health 2021; 5: 708-718
- 235 Zimmermann P, Pittet LF, Curtis N. Long covid in children and adolescents. British Medical Journal Publishing Group; 2022
- 236 Molteni E, Sudre CH, Canas LS. et al. Illness duration and symptom profile in a large cohort of symptomatic UK school-aged children tested for SARS-CoV-2. medRxiv; 2021
- 237 Ludvigsson JF. Case report and systematic review suggest that children may experience similar long‐term effects to adults after clinical COVID‐19. Acta Paediatrica 2021; 110: 914-921
- 238 Denina M, Pruccoli G, Scolfaro C. et al. Sequelae of COVID-19 in Hospitalized Children: A 4-Months Follow-Up. Pediatr Infect Dis J 2020; 39: e458-e459 DOI: 10.1097/inf.0000000000002937.
- 239 Miller F, Nguyen V, Navaratnam AM. et al. Prevalence of persistent symptoms in children during the COVID-19 pandemic: evidence from a household cohort study in England and Wales. medrxiv; 2021
- 240 Stephenson T, Pereira SP, Shafran R. et al. Long COVID-the physical and mental health of children and non-hospitalised young people 3 months after SARS-CoV-2 infection; a national matched cohort study (The CLoCk) Study. 2021
- 241 Osmanov IM, Spiridonova E, Bobkova P. et al. Risk factors for post-COVID-19 condition in previously hospitalised children using the ISARIC Global follow-up protocol: a prospective cohort study. Eur Respir J 2022; 59: 2101341 DOI: 10.1183/13993003.01341-2021.
- 242 Zimmermann P, Pittet LF, Curtis N. The Challenge of Studying Long COVID: An Updated Review. Pediatr Infect Dis J 2022; 41: 424-426 DOI: 10.1097/inf.0000000000003502.
- 243 Ravens-Sieberer U, Kaman A, Erhart M. et al. Impact of the COVID-19 pandemic on quality of life and mental health in children and adolescents in Germany. European Child & Adolescent Psychiatry 2021; 31: 879-889
- 244 Esposito S, Giannitto N, Squarcia A. et al. Development of psychological problems among adolescents during school closures because of the COVID-19 lockdown phase in Italy: a cross-sectional survey. Front Pediatr 2021; 8: 628072
- 245 Topfner N, Alberer M. Deutsche Gesellschaft für Padiatrische Infektiologie e. V. et al. [Recommendation for standardized medical care for children and adolescents with long COVID]. Monatsschr Kinderheilkd 2022; 170: 539-547 DOI: 10.1007/s00112-021-01408-1.
- 246 Guan WJ, Ni ZY, Hu Y. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720 DOI: 10.1056/NEJMoa2002032.
- 247 Statistics OfN. Statistical Bulletin. Office for National Statistics; 2021
- 248 Townsend L, Dowds J, O’Brien K. et al. Persistent Poor Health Post-COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann Am Thorac Soc 2021; 18: 997-1003
- 249 Laviolette L, Laveneziana P. Dyspnoea: a multidimensional and multidisciplinary approach. Eur Respir J 2014; 43: 1750-1762 DOI: 10.1183/09031936.00092613.
- 250 Luger AK, Sonnweber T, Gruber L. et al. Chest CT of Lung Injury 1 Year after COVID-19 Pneumonia: The CovILD Study. Radiology 2022; 304: 462-470
- 251 Motiejunaite J, Balagny P, Arnoult F. et al. Hyperventilation as one of the mechanisms of persistent dyspnoea in SARS-CoV-2 survivors. Eur Respir J 2021; 58: 2101578
- 252 Naeije R, Caravita S. Phenotyping long COVID. Eur Respir J 2021; 58: 2101763
- 253 Rinaldo RF, Mondoni M, Parazzini EM. et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J 2021; 58: 2100870
- 254 Skjørten I, Ankerstjerne OAW, Trebinjac D. et al. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur Respir J 2021; 58: 2100996
- 255 Hives L, Bradley A, Richards J. et al. Can physical assessment techniques aid diagnosis in people with chronic fatigue syndrome/myalgic encephalomyelitis? A diagnostic accuracy study. BMJ open 2017; 7: e017521
- 256 Mardani M. Post COVID syndrome. Arch Clin Infect Dis 2020; 15: e108819
- 257 Yi Y, Lagniton PN, Ye S. et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. International journal of biological sciences 2020; 16: 1753
- 258 Heidbreder A, Sonnweber T, Stefani A. et al. Video-polysomnographic findings after acute COVID-19: REM sleep without atonia as sign of CNS pathology?. Sleep medicine 2021; 80: 92-95
- 259 Yong SJ. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chem Neurosci 2021; 12: 573-580 DOI: 10.1021/acschemneuro.0c00793.
- 260 Vitti-Ruela BV, Dokkedal-Silva V, Rosa DS. et al. Possible sequelae in post-SARS-CoV-2 patients: effects on sleep and general health condition. Sleep Breath 2021; 25: 963-964 DOI: 10.1007/s11325-020-02152-8.
- 261 Kardos P, Dinh QT, Fuchs KH. et al. [Guidelines of the German Respiratory Society for Diagnosis and Treatment of Adults Suffering from Acute, Subacute and Chronic Cough]. Pneumologie 2019; 73: 143-180 DOI: 10.1055/a-0808-7409.
- 262 Copin MC, Parmentier E, Duburcq T. et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med 2020; 46: 1124-1126 DOI: 10.1007/s00134-020-06057-8.
- 263 Han X, Fan Y, Alwalid O. et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology 2021; 299: E177-E186 DOI: 10.1148/radiol.2021203153.
- 264 Daher A, Balfanz P, Cornelissen C. et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir Med 2020; 174: 106197 DOI: 10.1016/j.rmed.2020.106197.
- 265 Lehmann A, Prosch H, Zehetmayer S. et al. Impact of persistent D-dimer elevation following recovery from COVID-19. PLoS One 2021; 16: e0258351 DOI: 10.1371/journal.pone.0258351.
- 266 Katsoularis I, Fonseca-Rodríguez O, Farrington P. et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ 2022; 377: e069590
- 267 Remy-Jardin M, Duthoit L, Perez T. et al. Assessment of pulmonary arterial circulation 3 months after hospitalization for SARS-CoV-2 pneumonia: Dual-energy CT (DECT) angiographic study in 55 patients. EClinicalMedicine 2021; 34: 100778 DOI: 10.1016/j.eclinm.2021.100778.
- 268 Engelen MM, Vandenbriele C, Balthazar T. et al. Venous Thromboembolism in Patients Discharged after COVID-19 Hospitalization. Semin Thromb Hemost 2021; 47: 362-371 DOI: 10.1055/s-0041-1727284.
- 269 Dhawan RT, Gopalan D, Howard L. et al. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. Lancet Respir Med 2021; 9: 107-116 DOI: 10.1016/S2213-2600(20)30407-0.
- 270 Cho JL, Villacreses R, Nagpal P. et al. Quantitative Chest CT Assessment of Small Airways Disease in Post-Acute SARS-CoV-2 Infection. Radiology 2022; 212170 DOI: 10.1148/radiol.212170.
- 271 Behr J, Günther A, Bonella F. et al. S2K-Leitlinie zur Diagnostik der idiopathischen Lungenfibrose. Pneumologie 2020; 74: 263-293
- 272 Fink L, Jonigk D. Die aktualisierte S2k-Leitlinie zur Diagnostik der idiopathischen Lungenfibrose. Der Pathologe 2021; 42: 40-47
- 273 Grist JT, Chen M, Collier GJ. et al. Hyperpolarized (129)Xe MRI Abnormalities in Dyspneic Patients 3 Months after COVID-19 Pneumonia: Preliminary Results. Radiology 2021; 301: E353-e360 DOI: 10.1148/radiol.2021210033.
- 274 Sonnweber T, Sahanic S, Pizzini A. et al. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J 2021; 57: 2003481 DOI: 10.1183/13993003.03481-2020.
- 275 Bussolari C, Palumbo D, Fominsky E. et al. Case Report: Nintedaninb May Accelerate Lung Recovery in Critical Coronavirus Disease 2019. Front Med 2021; 8: 766486
- 276 Dicpinigaitis PV, Spinner L, Santhyadka G. et al. Effect of tiotropium on cough reflex sensitivity in acute viral cough. Lung 2008; 186: 369-374 DOI: 10.1007/s00408-008-9114-6.
- 277 Palmon PA, Jackson DJ, Denlinger LC. COVID-19 Infections and Asthma. J Allergy Clin Immunol Pract 2022; 10: 658-663 DOI: 10.1016/j.jaip.2021.10.072.
- 278 Philip KEJ, Buttery S, Williams P. et al. Impact of COVID-19 on people with asthma: a mixed methods analysis from a UK wide survey. BMJ Open Respir Res 2022; 9: e001056 DOI: 10.1136/bmjresp-2021-001056.
- 279 Peters EMJ, Schedlowski M, Watzl C. et al. [Can Stress Interact with SARS-CoV-2? A Narrative Review with a Focus on Stress-Reducing Interventions that may Improve Defence against COVID-19]. Psychother Psychosom Med Psychol 2021; 71: 61-71 DOI: 10.1055/a-1322-3205.
- 280 Alpert O, Begun L, Garren P. et al. Cytokine storm induced new onset depression in patients with COVID-19. A new look into the association between depression and cytokines -two case reports. Brain Behav Immun Health 2020; 9: 100173 DOI: 10.1016/j.bbih.2020.100173.
- 281 Tremblay ME, Madore C, Bordeleau M. et al. Neuropathobiology of COVID-19: The Role for Glia. Front Cell Neurosci 2020; 14: 592214 DOI: 10.3389/fncel.2020.592214.
- 282 Chrousos GP, Kaltsas G. Post-SARS sickness syndrome manifestations and endocrinopathy: how, why, and so what?. Clin Endocrinol (Oxf) 2005; 63: 363-365 DOI: 10.1111/j.1365-2265.2005.02361.x.
- 283 Kwek SK, Chew WM, Ong KC. et al. Quality of life and psychological status in survivors of severe acute respiratory syndrome at 3 months postdischarge. J Psychosom Res 2006; 60: 513-519 DOI: 10.1016/j.jpsychores.2005.08.020.
- 284 Lam MH, Wing YK, Yu MW. et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med 2009; 169: 2142-2147 DOI: 10.1001/archinternmed.2009.384.
- 285 Leow MK, Kwek DS, Ng AW. et al. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) 2005; 63: 197-202 DOI: 10.1111/j.1365-2265.2005.02325.x.
- 286 Mak IW, Chu CM, Pan PC. et al. Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry 2009; 31: 318-326 DOI: 10.1016/j.genhosppsych.2009.03.001.
- 287 Yuan K, Gong YM, Liu L. et al. Prevalence of posttraumatic stress disorder after infectious disease pandemics in the twenty-first century, including COVID-19: a meta-analysis and systematic review. Mol Psychiatry 2021; 26: 4982-4998 DOI: 10.1038/s41380-021-01036-x.
- 288 Weerahandi H, Hochman KA, Simon E. et al. Post-Discharge Health Status and Symptoms in Patients with Severe COVID-19. J Gen Intern Med 2021; 36: 738-745 DOI: 10.1007/s11606-020-06338-4.
- 289 Janiri D, Carfi A, Kotzalidis GD. et al. Posttraumatic Stress Disorder in Patients After Severe COVID-19 Infection. JAMA Psychiatry 2021; 78: 567-569 DOI: 10.1001/jamapsychiatry.2021.0109.
- 290 Dong F, Liu HL, Dai N. et al. A living systematic review of the psychological problems in people suffering from COVID-19. J Affect Disord 2021; 292: 172-188 DOI: 10.1016/j.jad.2021.05.060.
- 291 Badenoch JB, Rengasamy ER, Watson C. et al. Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis. Brain Commun 2022; 4: fcab297 DOI: 10.1093/braincomms/fcab297.
- 292 Dinse H, Speichert LJ, Schweda A. et al. Comment on Schäfer et al. „Impact of COVID-19 on Public Mental Health and the Buffering Effect of a Sense of Coherence“: High Level of COVID-19-Related Posttraumatic Stress in COVID-19 Survivors with Low Sense of Coherence. Psychother Psychosom 2022; 91: 139-141 DOI: 10.1159/000520963.
- 293 Nagarajan R, Krishnamoorthy Y, Basavarachar V. et al. Prevalence of post-traumatic stress disorder among survivors of severe COVID-19 infections: A systematic review and meta-analysis. J Affect Disord 2022; 299: 52-59 DOI: 10.1016/j.jad.2021.11.040.
- 294 Taquet M, Luciano S, Geddes JR. et al. Disentangling the complex bidirectional associations between COVID-19 and psychiatric disorder – Authors’ reply. Lancet Psychiatry 2021; 8: 179 DOI: 10.1016/S2215-0366(21)00028-6.
- 295 Taquet M, Luciano S, Geddes JR. et al. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 2021; 8: 130-140 DOI: 10.1016/S2215-0366(20)30462-4.
- 296 Mazza MG, De Lorenzo R, Conte C. et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020; 89: 594-600 DOI: 10.1016/j.bbi.2020.07.037.
- 297 Halpin SJ, McIvor C, Whyatt G. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol 2021; 93: 1013-1022 DOI: 10.1002/jmv.26368.
- 298 Wang PR, Oyem PC, Viguera AC. Prevalence of psychiatric morbidity following discharge after COVID-19 hospitalization. Gen Hosp Psychiatry 2021; 69: 131-132 DOI: 10.1016/j.genhosppsych.2020.12.013.
- 299 De Lorenzo R, Conte C, Lanzani C. et al. Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study. PLoS One 2020; 15: e0239570 DOI: 10.1371/journal.pone.0239570.
- 300 Rovere Querini P, De Lorenzo R, Conte C. et al. Post-COVID-19 follow-up clinic: depicting chronicity of a new disease. Acta Biomed 2020; 91: 22-28 DOI: 10.23750/abm.v91i9-S.10146.
- 301 Zhou M, Cai J, Sun W. et al. Do post-COVID-19 symptoms exist? A longitudinal study of COVID-19 sequelae in Wenzhou, China. Ann Med Psychol (Paris) 2021; 179: 818-821 DOI: 10.1016/j.amp.2021.03.003.
- 302 Watson CJ, Thomas RH, Solomon T. et al. COVID-19 and psychosis risk: Real or delusional concern?. Neurosci Lett 2021; 741: 135491 DOI: 10.1016/j.neulet.2020.135491.
- 303 Khraisat B, Toubasi A, AlZoubi L. et al. Meta-analysis of prevalence: the psychological sequelae among COVID-19 survivors. Int J Psychiatry Clin Pract 2021; 26: 234-243 DOI: 10.1080/13651501.2021.1993924.
- 304 Renaud-Charest O, Lui LMW, Eskander S. et al. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J Psychiatr Res 2021; 144: 129-137 DOI: 10.1016/j.jpsychires.2021.09.054.
- 305 Yunitri N, Chu H, Kang XL. et al. Global prevalence and associated risk factors of posttraumatic stress disorder during COVID-19 pandemic: A meta-analysis. Int J Nurs Stud 2022; 126: 104136 DOI: 10.1016/j.ijnurstu.2021.104136.
- 306 Rao S, Benzouak T, Gunpat S. et al. Fatigue Symptoms Associated With COVID-19 in Convalescent or Recovered COVID-19 Patients; a Systematic Review and Meta-Analysis. Ann Behav Med 2022; 56: 219-234 DOI: 10.1093/abm/kaab081.
- 307 Bucciarelli V, Nasi M, Bianco F. et al. Depression pandemic and cardiovascular risk in the COVID-19 era and long COVID syndrome: Gender makes a difference. Trends Cardiovasc Med 2022; 32: 12-17 DOI: 10.1016/j.tcm.2021.09.009.
- 308 García-Grimshaw M, Sankowski R, Valdés-Ferrer SI. Neurocognitive and psychiatric post-coronavirus disease 2019 conditions: pathogenic insights of brain dysfunction following severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Neurol 2022; DOI: 10.1097/wco.0000000000001046.
- 309 Poudel AN, Zhu S, Cooper N. et al. Impact of Covid-19 on health-related quality of life of patients: A structured review. PLoS One 2021; 16: e0259164 DOI: 10.1371/journal.pone.0259164.
- 310 Thye AY, Law JW, Tan LT. et al. Psychological Symptoms in COVID-19 Patients: Insights into Pathophysiology and Risk Factors of Long COVID-19. Biology (Basel) 2022; 11 DOI: 10.3390/biology11010061.
- 311 Hüfner K, Tymoszuk P, Ausserhofer D. et al. Who Is at Risk of Poor Mental Health Following Coronavirus Disease-19 Outpatient Management?. Front Med (Lausanne) 2022; 9: 792881 DOI: 10.3389/fmed.2022.792881.
- 312 Ärztliches Zentrum für Qualität In der Medizin (ÄZQ), Bundesärztekammer (BÄK); Kassenärztliche Bundesvereinigung (KBV); Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). PatientenLeitlinie zur Nationalen VersorgungsLeitlinie Chronische KHK. 2.. Auflage 2017. DOI: 10.6101/AZQ/000354
- 313 Hasenbring MI, Hallner D, Rusu AC. Fear-avoidance- and endurance-related responses to pain: development and validation of the Avoidance-Endurance Questionnaire (AEQ). Eur J Pain 2009; 13: 620-628 DOI: 10.1016/j.ejpain.2008.11.001.
- 314 Sammet I, Himmighoffen H, Brucker J. et al. [OPD in the hospital: an algorithm for structuring the diagnostic process with the Operationalized Psychodynamic Diagnostics OPD-2]. Z Psychosom Med Psychother 2012; 58: 282-298 DOI: 10.13109/zptm.2012.58.3.282.
- 315 Wittchen HU, Wunderlich U, Gruschwitz S. et al. SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen Originalversion des SKID I. Göttingen: Hogrefe; 1997
- 316 Schroth S, Köllner V. Akzeptanz und Commitment Therapie (ACT) bei körperlichen Erkrankungen. Ärztliche Psychotherapie 2020; 15: 177-183
- 317 Morres ID, Hatzigeorgiadis A, Stathi A. et al. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta‐analysis. Depression and anxiety 2019; 36: 39-53
- 318 Rosenbaum S, Vancampfort D, Steel Z. et al. Physical activity in the treatment of post-traumatic stress disorder: a systematic review and meta-analysis. Psychiatry research 2015; 230: 130-136
- 319 Esquivel G, Díaz-Galvis J, Schruers K. et al. Acute exercise reduces the effects of a 35% CO2 challenge in patients with panic disorder. J Affect Disord 2008; 107: 217-220
- 320 Gordon BR, McDowell CP, Lyons M. et al. The effects of resistance exercise training on anxiety: a meta-analysis and meta-regression analysis of randomized controlled trials. Sports Medicine 2017; 47: 2521-2532
- 321 Haroon S, Nirantharakumar K, Hughes SE. et al. Therapies for Long COVID in non-hospitalised individuals: from symptoms, patient-reported outcomes and immunology to targeted therapies (The TLC Study). BMJ open 2022; 12: e060413
- 322 Zheng Y, Wang L, Zhu Y. et al. Efficacy of cognitive behavioral therapy on mood and quality of life for patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100: e25512 DOI: 10.1097/MD.0000000000025512.
- 323 Ceban F, Leber A, Jawad MY. et al. Registered clinical trials investigating treatment of long COVID: a scoping review and recommendations for research. Infectious Diseases 2022; 1-11
- 324 Kupferschmitt A, Etzrodt F, Kleinschmidt J. et al. [Not Only Multimodal, but also Interdisciplinary: A Concept for Interdisciplinary Cooperation in the Rehabilitation of Post-COVID Syndrome]. Psychother Psychosom Med Psychol 2022; DOI: 10.1055/a-1838-3055.
- 325 Ahmadi Hekmatikar AH, Ferreira Júnior JB, Shahrbanian S. et al. Functional and Psychological Changes after Exercise Training in Post-COVID-19 Patients Discharged from the Hospital: A PRISMA-Compliant Systematic Review. Int J Environ Res Public Health 2022; 19: 2290
- 326 Spielmanns M, Pekacka-Egli AM, Schoendorf S. et al. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int J Environ Res Public Health 2021; 18: 2695 DOI: 10.3390/ijerph18052695.
- 327 Daynes E, Gerlis C, Chaplin E. et al. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition – A cohort study. Chron Respir Dis 2021; 18 14799731211015691. DOI: 10.1177/14799731211015691.
- 328 Hayden MC, Limbach M, Schuler M. et al. Effectiveness of a Three-Week Inpatient Pulmonary Rehabilitation Program for Patients after COVID-19: A Prospective Observational Study. International Journal of Environmental Research and Public Health 2021; 18: 9001
- 329 Gloeckl R, Leitl D, Jarosch I. et al. Benefits of pulmonary rehabilitation in COVID-19: a prospective observational cohort study. ERJ Open Res 2021; 7 DOI: 10.1183/23120541.00108-2021.
- 330 BAR-Frankfurt:. Bestandsaufnahme zu Long-Covid in der medizinischen Rehabilitation: Ergebnisse einer quantitativen Befragung. Online-Publikation Frankfurt/Main: 2021
- 331 AWMF. S2k-LL SARS-CoV-2, COVID-19 und (Früh-). 2021 Available from: https://www.awmf.org/uploads/tx_szleitlinien/080-008l_S2k_SARS-CoV-2_COVID-19_und__Frueh-__Rehabilitation_2021-11.pdf
- 332 Schlitt A, Schultz K, Platz T. AWMF-Leitlinie: Rehabilitation nach einer COVID-19-Erkrankung. Dtsch Ärztebl 2021; 118: A774
- 333 Platz T, Berghem S, Berlit P. et al. S2k-Leitlinie SARS-CoV-2, COVID-19 und (Früh-)Rehabilitation. In: Neurorehabilitation AGf ed AWMF Registernummer: 080-008 (Version 2; Stand: 1 November 2021) 2021
- 334 Kobelt-Pönicke A, Muschalla B. Psychosomatische Nachsorge nach stationärer psychosomatischer Rehabilitation (Psy-RENA). In: Praxishandbuch Psychosomatische Medizin in der Rehabilitation. Elsevier; 2021: 417-424
- 335 Al Chikhanie Y, Veale D, Schoeffler M. et al. Effectiveness of pulmonary rehabilitation in COVID-19 respiratory failure patients post-ICU. Respir Physiol Neurobiol 2021; 287: 103639 DOI: 10.1016/j.resp.2021.103639.
- 336 Frommhold J. Spezifische pneumologische Post-Corona-Rehabilitation. Ärzteblatt Mecklenburg Vorpommern 2021; 5-10
- 337 Desai SV, Law TJ, Needham DM. Long-term complications of critical care. Crit Care Med 2011; 39: 371-379 DOI: 10.1097/CCM.0b013e3181fd66e5.
- 338 Needham DM, Davidson J, Cohen H. et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med 2012; 40: 502-509 DOI: 10.1097/CCM.0b013e318232da75.
- 339 Saccheri C, Morawiec E, Delemazure J. et al. ICU-acquired weakness, diaphragm dysfunction and long-term outcomes of critically ill patients. Ann Intensive Care 2020; 10: 1 DOI: 10.1186/s13613-019-0618-4.
- 340 Piquet V, Luczak C, Seiler F. et al. Do Patients With COVID-19 Benefit from Rehabilitation? Functional Outcomes of the First 100 Patients in a COVID-19 Rehabilitation Unit. Arch Phys Med Rehabil 2021; 102: 1067-1074 DOI: 10.1016/j.apmr.2021.01.069.
- 341 Pincherle A, Johr J, Pancini L. et al. Intensive Care Admission and Early Neuro-Rehabilitation. Lessons for COVID-19?. Front Neurol 2020; 11: 880 DOI: 10.3389/fneur.2020.00880.
- 342 Heesakkers H, van der Hoeven JG, Corsten S. et al. Clinical Outcomes Among Patients With 1-Year Survival Following Intensive Care Unit Treatment for COVID-19. JAMA; 2022
- 343 Kedor C, Freitag H, Meyer-Arndt L. et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat Commun 2022; 13: 5104 DOI: 10.1038/s41467-022-32507-6.
- 344 Groff D, Sun A, Ssentongo AE. et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review. JAMA network open 2021; 4: e2128568-e2128568
- 345 Rass V, Beer R, Schiefecker AJ. et al. Neurological outcome and quality of life 3 months after COVID-19: A prospective observational cohort study. Eur J Neurol 2021; 28: 3348-3359 DOI: 10.1111/ene.14803.
- 346 Nersesjan V, Fonsmark L, Christensen RH. et al. Neuropsychiatric and Cognitive Outcomes in Patients 6 Months After COVID-19 Requiring Hospitalization Compared With Matched Control Patients Hospitalized for Non-COVID-19 Illness. JAMA Psychiatry; 2022 79. 486-49
- 347 Boukhris M, Hillani A, Moroni F. et al. Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective. Can J Cardiol 2020; 36: 1068-1080 DOI: 10.1016/j.cjca.2020.05.018.
- 348 Völler H, Schwaab B. Kardiologische Rehabilitation. Der Kardiologe 2020; 14: 106-112
- 349 Priegnitz J, Langheim E, Rademacher W. et al. Effektivität von psychokardiologischer Versorgung in der stationären Rehabilitation – ein Pilotprojekt. Psychother Psychosom Med Psychol 2020; 70: 190-196
- 350 Pfeifer K, Rütten A. Nationale Empfehlungen für Bewegung und Bewegungsförderung. Köln: Bundeszentrale für gesundheitliche Aufklärung; 2016
- 351 Bull FC, Al-Ansari SS, Biddle S. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020; 54: 1451-1462 DOI: 10.1136/bjsports-2020-102955.
- 352 Ahmed H, Patel K, Greenwood DC. et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med 2020; 52: jrm00063 DOI: 10.2340/16501977-2694.
- 353 Pelliccia A, Solberg EE, Papadakis M. et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J 2019; 40: 19-33 DOI: 10.1093/eurheartj/ehy730.
- 354 Schellhorn P, Klingel K, Burgstahler C. Return to sports after COVID-19 infection. Oxford University Press; 2020
- 355 Paluch AE, Bajpai S, Bassett DR. et al. Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. The Lancet Public Health 2022; 7: e219-e228
- 356 Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 2015; 25 (Suppl. 03) 1-72 DOI: 10.1111/sms.12581.
- 357 Vancini RL, Andrade MS, Viana RB. et al. Physical exercise and COVID-19 pandemic in PubMed: Two months of dynamics and one year of original scientific production. Sports Med Health Sci 2021; 3: 80-92 DOI: 10.1016/j.smhs.2021.04.004.
- 358 Stockwell S, Trott M, Tully M. et al. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: a systematic review. BMJ Open Sport Exerc Med 2021; 7: e000960 DOI: 10.1136/bmjsem-2020-000960.
- 359 Ding K, Yang J, Chin M-K. et al. Physical activity among adults residing in 11 countries during the COVID-19 pandemic lockdown. Int J Environ Res Public Health 2021; 18: 7056
- 360 Fernández-Lázaro D, González-Bernal JJ, Sánchez-Serrano N. et al. Physical exercise as a multimodal tool for COVID-19: could it be used as a preventive strategy?. Int J Environ Res Public Health 2020; 17: 8496
- 361 da Silveira MP, da Silva Fagundes KK, Bizuti MR. et al. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clin Exp Med 2021; 21: 15-28
- 362 [Anonym]. Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html#:~:text=Summary%20of%20Conditions%20with%20Evidence,-Higher%20risk%20for&text=Interstitial%20lung%20disease,Bronchiectasis
- 363 Hill AL, Morford M, Okasako-Schmucker DL. et al. Brief Summary of Findings on the Association Between Physical Inactivity and Severe COVID-19 Outcomes. 2022 Available from: https://www.cdc.gov/coronavirus/2019-ncov/downloads/clinical-care/E-Physical-Inactivity-Review.pdf
- 364 Hammami A, Harrabi B, Mohr M. et al. Physical activity and coronavirus disease 2019 (COVID-19): specific recommendations for home-based physical training. Managing Sport and Leisure 2022; 27: 26-31
- 365 Betschart M, Rezek S, Unger I. et al. Feasibility of an outpatient training program after covid-19. Int J Environ Res Public Health 2021; 18: 3978
- 366 Hermann M, Pekacka-Egli A-M, Witassek F. et al. Feasibility and efficacy of cardiopulmonary rehabilitation following COVID-19. Am J Phys Med Rehabil 2020; 99: 865-869
- 367 Nambi G, Abdelbasset WK, Alrawaili SM. et al. Comparative effectiveness study of low versus high-intensity aerobic training with resistance training in community-dwelling older men with post-COVID 19 sarcopenia: A randomized controlled trial. Clin Rehabil 2021; 36: 59-68
- 368 Ainsworth BE, Haskell WL, Herrmann SD. et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc 2011; 43: 1575-1581 DOI: 10.1249/MSS.0b013e31821ece12.
- 369 Pieh C, Budimir S, Probst T. The effect of age, gender, income, work, and physical activity on mental health during coronavirus disease (COVID-19) lockdown in Austria. J Psychosom Res 2020; 136: 110186
- 370 Fancourt D, Steptoe A, Bu F. Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: a longitudinal observational study. The Lancet Psychiatry 2021; 8: 141-149
- 371 Torjesen I. NICE backtracks on graded exercise therapy and CBT in draft revision to CFS guidance. BMJ 2020; 371: m4356 DOI: 10.1136/bmj.m4356.
- 372 Hopkins C, Surda P, Vaira LA. et al. Six month follow-up of self-reported loss of smell during the COVID-19 pandemic. Rhinology 2021; 59: 26-31 DOI: 10.4193/Rhin20.544.
- 373 Otte MS, Bork ML, Zimmermann PH. et al. Persisting olfactory dysfunction improves in patients 6 months after COVID-19 disease. Acta Otolaryngol 2021; 141: 626-629 DOI: 10.1080/00016489.2021.1905178.
- 374 S3-Leitlinie Insomnie der DEGAM 2017. Available from: https://www.degam.de/files/Inhalte/Leitlinien-Inhalte/Dokumente/Interdisziplinaere%20Leitlinien/063-003_Insomnie/063-003_DEGAM%20Anwenderversion_17-06-2017.pdf
- 375 Häuser W, Bock F, Hüppe M. et al. Empfehlungen der zweiten Aktualisierung der Leitlinie LONTS. Der Schmerz 2020; 34: 204-244
- 376 Daroische R, Hemminghyth MS, Eilertsen TH. et al. Cognitive impairment after COVID-19 – a review on objective test data. Front Neurol 2021; 12: 699582
- 377 Beaud V, Crottaz-Herbette S, Dunet V. et al. Pattern of cognitive deficits in severe COVID-19. Journal of Neurology, Neurosurgery & Psychiatry 2021; 92: 567-568
- 378 Almeria M, Cejudo JC, Sotoca J. et al. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun Health 2020; 9: 100163
- 379 Dziewas R, Hufelschulte LM, Lepper J. et al. Dysphagia in Patients With Severe Coronavirus Disease 2019-Potential Neurologic Etiologies. Crit Care Explor 2021; 3: e0332 DOI: 10.1097/CCE.0000000000000332.
- 380 Brodsky MB, Gilbert RJ. The Long-Term Effects of COVID-19 on Dysphagia Evaluation and Treatment. Arch Phys Med Rehabil 2020; 101: 1662-1664 DOI: 10.1016/j.apmr.2020.05.006.
- 381 Boggiano S, Williams T, Gill SE. et al. Multidisciplinary management of laryngeal pathology identified in patients with COVID-19 following trans-laryngeal intubation and tracheostomy. Journal of the Intensive Care Society 2021; DOI: 10.1177/1751143721103469.
- 382 Costello F, Dalakas MC. Cranial neuropathies and COVID-19: neurotropism and autoimmunity. Neurology 2020; 95: 195-196
- 383 Regan J, Walshe M, Lavan S. et al. Post-extubation dysphagia and dysphonia amongst adults with COVID-19 in the Republic of Ireland: A prospective multi-site observational cohort study. Clin Otolaryngol 2021; 46: 1290-1299 DOI: 10.1111/coa.13832.
- 384 Herrera JE, Niehaus WN, Whiteson J. et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients. PM R 2021; 13: 1027-1043 DOI: 10.1002/pmrj.12684.
- 385 Saniasiaya J, Kulasegarah J, Narayanan P. New-Onset Dysphonia: A Silent Manifestation of COVID-19. Los Angeles, CA: SAGE Publications Sage CA; 2021. 0145561321995008
- 386 Archer SK, Iezzi CM, Gilpin L. Swallowing and Voice Outcomes in Patients Hospitalized With COVID-19: An Observational Cohort Study. Arch Phys Med Rehabil 2021; 102: 1084-1090 DOI: 10.1016/j.apmr.2021.01.063.
- 387 McGrath B, Wallace S, Goswamy J. Laryngeal oedema associated with COVID-19 complicating airway management. Anaesthesia 2020; 75: 972
- 388 Naunheim MR, Zhou AS, Puka E. et al. Laryngeal complications of COVID-19. Laryngoscope Investig Otolaryngol 2020; 5: 1117-1124 DOI: 10.1002/lio2.484.
- 389 Gehrke-Beck S, Holzinger F. Abklärung und Behandlung von chronischem und refraktärem Husten. Arzneiverordnung in der Praxis 2017; 2017: 1-9
- 390 Vertigan AE, Theodoros DG, Gibson PG. et al. Voice and upper airway symptoms in people with chronic cough and paradoxical vocal fold movement. Journal of Voice 2007; 21: 361-383
- 391 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381
- 392 Gibson PG, Vertigan AE. Speech pathology for chronic cough: a new approach. Pulm Pharmacol Ther 2009; 22: 159-162 DOI: 10.1016/j.pupt.2008.11.005.
- 393 Vertigan AE, Haines J, Slovarp L. An Update on Speech Pathology Management of Chronic Refractory Cough. J Allergy Clin Immunol Pract 2019; 7: 1756-1761 DOI: 10.1016/j.jaip.2019.03.030.
- 394 Reich S. Patientenspezifische Funktionsskala. Physiopraxis 2020; 3/20: 34-37
- 395 Tenforde AS, Borgstrom H, Polich G. et al. Outpatient physical, occupational, and speech therapy synchronous telemedicine: a survey study of patient satisfaction with virtual visits during the COVID-19 pandemic. Am J Phys Med Rehabil 2020; 99: 977-981
- 396 Clark LV, Pesola F, Thomas JM. et al. Guided graded exercise self-help plus specialist medical care versus specialist medical care alone for chronic fatigue syndrome (GETSET): a pragmatic randomised controlled trial. The Lancet 2017; 390: 363-373
- 397 Nasreddine ZS, Phillips NA, Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695-699 DOI: 10.1111/j.1532-5415.2005.53221.x.
- 398 Thomann AE, Berres M, Goettel N. et al. Enhanced diagnostic accuracy for neurocognitive disorders: a revised cut-off approach for the Montreal Cognitive Assessment. Alzheimers Res Ther 2020; 12: 39 DOI: 10.1186/s13195-020-00603-8.
- 399 Farias ST, Mungas D, Reed BR. et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology 2008; 22: 531-544 DOI: 10.1037/0894-4105.22.4.531.
- 400 Tomaszewski Farias S, Mungas D, Harvey DJ. et al. The measurement of everyday cognition: development and validation of a short form of the Everyday Cognition scales. Alzheimers Dement 2011; 7: 593-601 DOI: 10.1016/j.jalz.2011.02.007.
- 401 Heubrock D, Eberl I, Petermann F. Neuropsychologische Diagnostik bei Simulationsverdacht: Empirische Bewährung der Bremer Symptom-Validierung als simulationssensibles Untersuchungsverfahren. Zeitschrift für Neuropsychologie 2002; 13: 45-58 DOI: 10.1024/1016-264X.13.1.45.
- 402 Merten T. Beschwerdenvalidierung. In: Thöne-Otto A. Hrsg. Fortschritte der Neuropsychologie. Göttingen: Hogrefe GmbH + Co; 2014
- 403 Maxwell E, Poole R, Oustric P. Living with COVID-19-second review: A dynamic review of the evidence around on ongoing covid 19 (often called Long Covid). National Institute for Health Research; 2021
- 404 Laquai S. Genesen heißt nicht gesund – Chronisches Fatigue-Syndrom nach Covid-19-Erkrankung. physiopraxis 2021; 19: 30-33