RSS-Feed abonnieren
DOI: 10.1055/a-1973-3038
Listening with an Ageing Brain – a Cognitive Challenge
Artikel in mehreren Sprachen: deutsch | EnglishAbstract
Hearing impairment has been recently identified as a major modifiable risk factor for cognitive decline in later life and has been becoming of increasing scientific interest. Sensory and cognitive decline are connected by complex bottom-up and top-down processes, a sharp distinction between sensation, perception, and cognition is impossible. This review provides a comprehensive overview on the effects of healthy and pathological aging on auditory as well as cognitive functioning on speech perception and comprehension, as well as specific auditory deficits in the 2 most common neurodegenerative diseases in old age: Alzheimer disease and Parkinson syndrome. Hypotheses linking hearing loss to cognitive decline are discussed, and current knowledge on the effect of hearing rehabilitation on cognitive functioning is presented. This article provides an overview of the complex relationship between hearing and cognition in old age.
Key words
age related hearing loss - presbycusis - central auditory processing disorder - neurocognitive disorder - Alzheimer disease - Parkinson syndrome - hearing rehabilitationPublikationsverlauf
Artikel online veröffentlicht:
02. Mai 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Stangl, Werner. Online Lexikon für Psychologie und Pädagogik
- 2 Flanagan DP, Dixon SG. The Cattell-Horn-Carroll Theory of Cognitive Abilities. In: Encyclopedia of Special Education. John Wiley & Sons, Ltd; 2014
- 3 American Psychiatric Association, Peter Falkai, Hans-Ulrich Wittchen Diagnostisches und Statistisches Manual Psychischer Störungen DSM-5. 2. korrigierte Auflage 2018. Hogrefe; 2018
- 4 Tucker-Drob EM. Neurocognitive functions and everyday functions change together in old age. Neuropsychology 2011; 25: 368-377
- 5 Tucker-Drob EM. Cognitive Aging and Dementia: A Life Span Perspective. Annu Rev. Dev Psychol 2019; 1: 177-196
- 6 Baltes PB. [Age and aging as incomplete architecture of human ontogenesis]. Z Gerontol Geriatr 1999; 32: 433-448
- 7 Tucker-Drob EM, de la Fuente J, Köhncke Y. et al. A strong dependency between changes in fluid and crystallized abilities in human cognitive aging. Sci Adv 2022; 8: eabj2422
- 8 Hartshorne JK, Germine LT. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol Sci 2015; 26: 433-443
- 9 Tucker-Drob EM. Global and domain-specific changes in cognition throughout adulthood. Dev Psychol 2011; 47: 331-343
- 10 Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 2004; 44: 195-208
- 11 Hedden T, Gabrieli JDE. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004; 5: 87-96
- 12 Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 2013; 77: 219-234
- 13 Baltes PB, Dittmann-Kohli F, Kliegl R. Reserve capacity of the elderly in aging-sensitive tests of fluid intelligence: replication and extension. Psychol Aging 1986; 1: 172-177
- 14 Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D. et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement J Alzheimers Assoc 2020; 16: 1305-1311
- 15 Tucker AM, Stern Y. Cognitive reserve in aging. Curr Alzheimer Res 2011; 8: 354-360
- 16 Stenfelt S, Rönnberg J. The signal-cognition interface: interactions between degraded auditory signals and cognitive processes. Scand J Psychol 2009; 50: 385-393
- 17 Wingfield A, Tun PA. Cognitive Supports and Cognitive Constraints on Comprehension of Spoken Language. J Am Acad Audiol 2007; 18: 548-558
- 18 Gordon-Salant S, Shader MJ, Wingfield A. Age-Related Changes in Speech Understanding: Peripheral Versus Cognitive Influences. In: Helfer KS, Bartlett EL, Popper AN, et al., Hrsg. Aging and Hearing: Causes and Consequences. Cham: Springer International Publishing; 2020: 199-230
- 19 Johnson JCS, Marshall CR, Weil RS. et al. Hearing and dementia: from ears to brain. Brain J Neurol 2021; 144: 391-401
- 20 World Health Organization World report on hearing. Geneva: World Health Organization; 2021
- 21 Davis A, McMahon CM, Pichora-Fuller KM. et al. Aging and Hearing Health: The Life-course Approach. The Gerontologist 2016; 56: S256-S267
- 22 Lin FR, Yaffe K, Xia J. et al. Hearing loss and cognitive decline in older adults. JAMA Intern Med 2013; 173: 293-299
- 23 Loughrey DG, Kelly ME, Kelley GA. et al. Association of Age-Related Hearing Loss With Cognitive Function, Cognitive Impairment, and Dementia: A Systematic Review and Meta-analysis. JAMA Otolaryngol-- Head Neck Surg 2018; 144: 115-126
- 24 Livingston G, Huntley J, Sommerlad A. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet Lond Engl 2020; 396: 413-446
- 25 Livingston G, Sommerlad A, Orgeta V. et al. Dementia prevention, intervention, and care. Lancet Lond Engl 2017; 390: 2673-2734
- 26 Rutherford BR, Brewster K, Golub JS. et al. Sensation and Psychiatry: Linking Age-Related Hearing Loss to Late-Life Depression and Cognitive Decline. Am J Psychiatry 2018; 175: 215-224
- 27 Brewster K, Choi CJ, He X. et al. Hearing Rehabilitative Treatment for Older Adults With Comorbid Hearing Loss and Depression: Effects on Depressive Symptoms and Executive Function. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 2022; 30: 448-458
- 28 Brewster KK, Pavlicova M, Stein A. et al. A pilot randomized controlled trial of hearing aids to improve mood and cognition in older adults. Int J Geriatr Psychiatry 2020; 35: 842-850
- 29 Bigelow RT, Reed NS, Brewster KK. et al. Association of Hearing Loss With Psychological Distress and Utilization of Mental Health Services Among Adults in the United States. JAMA Netw Open 2020; 3: e2010986
- 30 Orji A, Kamenov K, Dirac M. et al. Global and regional needs, unmet needs and access to hearing aids. Int J Audiol 2020; 59: 166-172
- 31 Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017; 349: 138-147
- 32 Keithley EM. Pathology and mechanisms of cochlear aging. J Neurosci Res 2020; 98: 1674-1684
- 33 Frisina RD, Ding B, Zhu X. et al. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons. Aging 2016; 8: 2081-2099
- 34 Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res 2015; 330: 191-199
- 35 Wu PZ, Liberman LD, Bennett K. et al. Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience 2019; 407: 8-20
- 36 Gates GA, Mills JH. Presbycusis. The Lancet 2005; 366: 1111-1120
- 37 Dubno JR, Eckert MA, Lee F-S. et al. Classifying human audiometric phenotypes of age-related hearing loss from animal models. J Assoc Res Otolaryngol JARO 2013; 14: 687-701
- 38 Fischer N, Weber B, Riechelmann H. [Presbycusis – Age Related Hearing Loss]. Laryngorhinootologie 2016; 95: 497-510
- 39 Michel O. [DIN EN ISO 7029:2017-06 : The current DIN thresholds for evaluating normal hearing]. HNO 2021; 69: 1014-1018
- 40 Tremblay KL, Pinto A, Fischer ME. et al. Self-Reported Hearing Difficulties Among Adults With Normal Audiograms: The Beaver Dam Offspring Study. Ear Hear 2015; 36: e290-e299
- 41 Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci Off J Soc Neurosci 2011; 31: 13452-13457
- 42 Bajin MD, Dahm V, Lin VYW. Hidden hearing loss: current concepts. Curr Opin Otolaryngol Head Neck Surg 2022;
- 43 C Kohrman D, Wan G, Cassinotti L et al. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10: a035493
- 44 Pienkowski M. On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms. Ear Hear 2017; 38: 135-148
- 45 Plack CJ, Barker D, Prendergast G. Perceptual consequences of „hidden“ hearing loss. Trends Hear 2014; 18: 2331216514550621
- 46 Parthasarathy A, Kujawa SG. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing. J Neurosci Off J Soc Neurosci 2018; 38: 7108-7119
- 47 Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 2017; 8: 14487
- 48 Choi JE, Seok JM, Ahn J. et al. Hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1A. Sci Rep 2018; 8: 10335
- 49 Mulders WHAM, Chin IL, Robertson D. Persistent hair cell malfunction contributes to hidden hearing loss. Hear Res 2018; 361: 45-51
- 50 Hoben R, Easow G, Pevzner S. et al. Outer Hair Cell and Auditory Nerve Function in Speech Recognition in Quiet and in Background Noise. Front Neurosci 2017; 11: 157
- 51 Sergeyenko Y, Lall K, Liberman MC. et al. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci Off J Soc Neurosci 2013; 33: 13686-13694
- 52 Grant KJ, Mepani AM, Wu P. et al. Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J Neurophysiol 2020; 124: 418-431
- 53 Jayakody DMP, Friedland PL, Martins RN. et al. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review. Front Neurosci 2018; 12: 125
- 54 Ouda L, Profant O, Syka J. Age-related changes in the central auditory system. Cell Tissue Res 2015; 361: 337-358
- 55 Hedman AM, van Haren NEM, Schnack HG. et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 2012; 33: 1987-2002
- 56 Mori S, Onda K, Fujita S. et al. Brain atrophy in middle age using magnetic resonance imaging scans from Japan’s health screening programme. Brain Commun 2022; 4: fcac211
- 57 Miller KL, Alfaro-Almagro F, Bangerter NK. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 2016; 19: 1523-1536
- 58 Lemaitre H, Goldman AL, Sambataro F. et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?. Neurobiol Aging 2012; 33: e1-e9
- 59 Raz N, Gunning FM, Head D. et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex N Y N 1991 1997; 7: 268-282
- 60 Raz N, Rodrigue KM, Head D. et al. Differential aging of the medial temporal lobe: a study of a five-year change. Neurology 2004; 62: 433-438
- 61 Raz N, Rodrigue KM, Kennedy KM. et al. Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology 2007; 21: 149-157
- 62 Westlye LT, Walhovd KB, Dale AM. et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex N Y N 1991 2010; 20: 2055-2068
- 63 Vidal-Pineiro D, Parker N, Shin J. et al. Cellular correlates of cortical thinning throughout the lifespan. Sci Rep 2020; 10: 21803
- 64 Scahill RI, Frost C, Jenkins R. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 2003; 60: 989-994
- 65 Braak H, Thal DR, Ghebremedhin E. et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960-969
- 66 Pettemeridou E, Kallousia E, Constantinidou F. Regional Brain Volume, Brain Reserve and MMSE Performance in Healthy Aging From the NEUROAGE Cohort: Contributions of Sex, Education, and Depression Symptoms. Front Aging Neurosci 2021; 13: 711301
- 67 Kalpouzos G, Persson J, Nyberg L. Local brain atrophy accounts for functional activity differences in normal aging. Neurobiol Aging 2012; 33: 623.e1-623.e13
- 68 Lin FR, Ferrucci L, An Y. et al. Association of hearing impairment with brain volume changes in older adults. NeuroImage 2014; 90: 84-92
- 69 Husain FT, Medina RE, Davis CW. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 2011; 1369: 74-88
- 70 Boyen K, Langers DRM, de Kleine E. et al. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 2013; 295: 67-78
- 71 Rosemann S, Thiel CM. Neuroanatomical changes associated with age-related hearing loss and listening effort. Brain Struct Funct 2020; 225: 2689-2700
- 72 Peelle JE, Troiani V, Grossman M. et al. Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci Off J Soc Neurosci 2011; 31: 12638-12643
- 73 Eckert MA, Cute SL, Vaden KI. et al. Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol JARO 2012; 13: 703-713
- 74 Chang Y, Lee S-H, Lee Y-J. et al. Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging. NeuroReport 2004; 15: 1699-1703
- 75 Profant O, Balogová Z, Dezortová M. et al. Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy. Exp Gerontol 2013; 48: 795-800
- 76 Gao F, Wang G, Ma W. et al. Decreased auditory GABA+concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. NeuroImage 2015; 106: 311-316
- 77 Peelle JE, Wingfield A. The Neural Consequences of Age-Related Hearing Loss. Trends Neurosci 2016; 39: 486-497
- 78 Gordon-Salant S, Yeni-Komshian G, Fitzgibbons P. The role of temporal cues in word identification by younger and older adults: effects of sentence context. J Acoust Soc Am 2008; 124: 3249-3260
- 79 Schvartz KC, Chatterjee M, Gordon-Salant S. Recognition of spectrally degraded phonemes by younger, middle-aged, and older normal-hearing listeners. J Acoust Soc Am 2008; 124: 3972-3988
- 80 Goupell MJ, Gaskins CR, Shader MJ. et al. Age-Related Differences in the Processing of Temporal Envelope and Spectral Cues in a Speech Segment. Ear Hear 2017; 38: e335-e342
- 81 Gordon-Salant S, Yeni-Komshian GH, Fitzgibbons PJ. Recognition of accented English in quiet by younger normal-hearing listeners and older listeners with normal-hearing and hearing loss. J Acoust Soc Am 2010; 128: 444-455
- 82 Gordon-Salant S, Zion DJ, Espy-Wilson C. Recognition of time-compressed speech does not predict recognition of natural fast-rate speech by older listeners. J Acoust Soc Am 2014; 136: EL268-EL274
- 83 Helfer KS, Freyman RL. Aging and Speech-on-Speech Masking. Ear Hear 2008; 29: 87-98
- 84 Dubno JR, Dirks DD, Morgan DE. Effects of age and mild hearing loss on speech recognition in noise. J Acoust Soc Am 1984; 76: 87-96
- 85 Tun PA, Wingfield A. One voice too many: adult age differences in language processing with different types of distracting sounds. J Gerontol B Psychol Sci Soc Sci 1999; 54: P317-P327
- 86 Pronk M, Deeg DJH, Festen JM. et al. Decline in older persons’ ability to recognize speech in noise: the influence of demographic, health-related, environmental, and cognitive factors. Ear Hear 2013; 34: 722-732
- 87 Füllgrabe C, Moore BCJ, Stone MA. Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front Aging Neurosci 2015; 6: 347
- 88 Gallun FJ. Impaired Binaural Hearing in Adults: A Selected Review of the Literature. Front Neurosci 2021; 15: 610957
- 89 Hommet C, Mondon K, Berrut G. et al. Central auditory processing in aging: the dichotic listening paradigm. J Nutr Health Aging 2010; 14: 751-756
- 90 Dillard LK, Fischer ME, Pinto A. et al. Longitudinal Decline on the Dichotic Digits Test. Am J Audiol 2020; 29: 862-872
- 91 Harris KC. The Aging Auditory System: Electrophysiology. In: Helfer KS, Bartlett EL, Popper AN, et al., Hrsg. Aging and Hearing: Causes and Consequences. Cham: Springer International Publishing; 2020: 117-141
- 92 Morrison C, Rabipour S, Knoefel F. et al. Auditory Event-related Potentials in Mild Cognitive Impairment and Alzheimer’s Disease. Curr Alzheimer Res 2018; 15: 702-715
- 93 Gates GA. Central presbycusis: an emerging view. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg 2012; 147: 1-2
- 94 Humes LE, Dubno JR, Gordon-Salant S. et al. Central presbycusis: a review and evaluation of the evidence. J Am Acad Audiol 2012; 23: 635-666
- 95 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Hrsg. S1-Leitlinie 2019 Auditive Verarbeitungs- und Wahrnehmungsstörungen (AVWS) Herausgegeben von der Deutschen Gesellschaft für Phoniatrie und Pädaudiologie
- 96 Schneider BA, Pichora-Fuller K, Daneman M. Effects of Senescent Changes in Audition and Cognition on Spoken Language Comprehension. In: Gordon-Salant S, Frisina RD, Popper AN, et al., Hrsg. The Aging Auditory System. New York, NY: Springer; 2010: 167-210
- 97 Janse E. A non-auditory measure of interference predicts distraction by competing speech in older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2012; 19: 741-758
- 98 Ward KM, Shen J, Souza PE. et al. Age-Related Differences in Listening Effort During Degraded Speech Recognition. Ear Hear 2017; 38: 74-84
- 99 Arlinger S, Lunner T, Lyxell B. et al. The emergence of cognitive hearing science. Scand J Psychol 2009; 50: 371-384
- 100 Luce PA, Pisoni DB. Recognizing spoken words: the neighborhood activation model. Ear Hear 1998; 19: 1-36
- 101 Taler V, Aaron GP, Steinmetz LG. et al. Lexical neighborhood density effects on spoken word recognition and production in healthy aging. J Gerontol B Psychol Sci Soc Sci 2010; 65: 551-560
- 102 Helfer KS, Jesse A. Lexical influences on competing speech perception in younger, middle-aged, and older adults. J Acoust Soc Am 2015; 138: 363-376
- 103 Jesse A, Helfer KS. Lexical Influences on Errors in Masked Speech Perception in Younger, Middle-Aged, and Older Adults. J Speech Lang Hear Res JSLHR 2019; 62: 1152-1166
- 104 Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol 2012; 63: 1-29
- 105 Rönnberg J, Holmer E, Rudner M. Cognitive Hearing Science: Three Memory Systems, Two Approaches, and the Ease of Language Understanding Model. J Speech Lang Hear Res JSLHR 2021; 64: 359-370
- 106 Peelle JE. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior. Ear Hear 2018; 39: 204-214
- 107 Rudner M, Rönnberg J, Lunner T. Working memory supports listening in noise for persons with hearing impairment. J Am Acad Audiol 2011; 22: 156-167
- 108 Gordon-Salant S, Cole SS. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing. Ear Hear 2016; 37: 593-602
- 109 Benichov J, Cox LC, Tun PA. et al. Word recognition within a linguistic context: effects of age, hearing acuity, verbal ability, and cognitive function. Ear Hear 2012; 33: 250-256
- 110 Rogers CS, Jacoby LL, Sommers MS. Frequent false hearing by older adults: the role of age differences in metacognition. Psychol Aging 2012; 27: 33-45
- 111 Rogers CS. Semantic priming, not repetition priming, is to blame for false hearing. Psychon Bull Rev 2017; 24: 1194-1204
- 112 Failes E, Sommers MS, Jacoby LL. Blurring past and present: Using false memory to better understand false hearing in young and older adults. Mem Cognit 2020; 48: 1403-1416
- 113 Van Os M, Kray J, Demberg V. Mishearing as a Side Effect of Rational Language Comprehension in Noise. Front Psychol 2021; 12: 679278
- 114 Pichora-Fuller MK, Kramer SE, Eckert MA. et al. Hearing Impairment and Cognitive Energy: The Framework for Understanding Effortful Listening (FUEL). Ear Hear 2016; 37: 5S
- 115 Vos T, Lim SS, Abbafati C. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 2020; 396: 1204-1222
- 116 GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022; 7: e105-e125
- 117 Deutsche Alzheimer Gesellschaft e.V. Infoblatt 1: Die Häufigkeit von Demenzerkrankungen. . Im Internet: https://www.deutsche-alzheimer.de/publikationen/informationsblaetter;
- 118 Wancata J, Musalek M, Alexandrowicz R. et al. Number of dementia sufferers in Europe between the years 2000 and 2050. Eur Psychiatry J Assoc Eur Psychiatr 2003; 18: 306-313
- 119 Norton S, Matthews FE, Barnes DE. et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 2014; 13: 788-794
- 120 Jessen F. Die Nationale Demenzstrategie. Fortschritte Neurol · Psychiatr 2022; 90: 320-325
- 121 Hans-Holger Bleß, Doron Benjamin Stein Weißbuch Versorgung der frühen Alzheimer Krankheit. Springer; 2021
- 122 Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019; 179: 312-339
- 123 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Hrsg. S3-Leitlinie „Demenzen“ (Langversion – Januar 2016)
- 124 Urbach H, Egger K. MRT bei neurodegenerativen Erkrankungen. : 18.
- 125 Crutch SJ, Lehmann M, Schott JM. et al. Posterior cortical atrophy. Lancet Neurol 2012; 11: 170-178
- 126 Ossenkoppele R, Pijnenburg YAL, Perry DC. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain J Neurol 2015; 138: 2732-2749
- 127 Warren JD, Fletcher PD, Golden HL. The paradox of syndromic diversity in Alzheimer disease. Nat Rev Neurol 2012; 8: 451-464
- 128 Sinha UK, Hollen KM, Rodriguez R. et al. Auditory system degeneration in Alzheimer’s disease. Neurology 1993; 43: 779-785
- 129 Goll JC, Kim LG, Hailstone JC. et al. Auditory object cognition in dementia. Neuropsychologia 2011; 49: 2755-2765
- 130 Golden HL, Agustus JL, Goll JC. et al. Functional neuroanatomy of auditory scene analysis in Alzheimer’s disease. NeuroImage Clin 2015; 7: 699-708
- 131 Golden HL, Agustus JL, Nicholas JM. et al. Functional neuroanatomy of spatial sound processing in Alzheimer’s disease. Neurobiol Aging 2016; 39: 154-164
- 132 Goll JC, Kim LG, Ridgway GR. et al. Impairments of auditory scene analysis in Alzheimer’s disease. Brain J Neurol 2012; 135: 190-200
- 133 Idrizbegovic E, Hederstierna C, Dahlquist M. et al. Central auditory function in early Alzheimer’s disease and in mild cognitive impairment. Age Ageing 2011; 40: 249-254
- 134 Coebergh JAF, McDowell S. van Woerkom TCAM, et al. Auditory Agnosia for Environmental Sounds in Alzheimer’s Disease: Not Hearing and Not Listening?. J Alzheimers Dis JAD 2020; 73: 1407-1419
- 135 Uhlmann RF, Larson EB, Koepsell TD. Hearing impairment and cognitive decline in senile dementia of the Alzheimer’s type. J Am Geriatr Soc 1986; 34: 207-210
- 136 Lin FR, Metter EJ, O’Brien RJ. et al. Hearing loss and incident dementia. Arch Neurol 2011; 68: 214-220
- 137 Taljaard DS, Olaithe M, Brennan-Jones CG. et al. The relationship between hearing impairment and cognitive function: a meta-analysis in adults. Clin Otolaryngol 2016; 41: 718-729
- 138 Gates GA, Cobb JL, Linn RT. et al. Central auditory dysfunction, cognitive dysfunction, and dementia in older people. Arch Otolaryngol Head Neck Surg 1996; 122: 161-167
- 139 Gates GA, Beiser A, Rees TS. et al. Central auditory dysfunction may precede the onset of clinical dementia in people with probable Alzheimer’s disease. J Am Geriatr Soc 2002; 50: 482-488
- 140 Gates GA, Anderson ML, McCurry SM. et al. Central Auditory Dysfunction as a Harbinger of Alzheimer Dementia. Arch Otolaryngol Neck Surg 2011; 137: 390-395
- 141 Quaranta N, Coppola F, Casulli M. et al. The prevalence of peripheral and central hearing impairment and its relation to cognition in older adults. Audiol Neurootol 2014; 19: 10-14
- 142 Sardone R, Battista P, Donghia R. et al. Age-Related Central Auditory Processing Disorder, MCI, and Dementia in an Older Population of Southern Italy. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg 2020; 163: 348-355
- 143 Mamo SK, Reed NS, Sharrett AR. et al. Relationship Between Domain-Specific Cognitive Function and Speech-in-Noise Performance in Older Adults: The Atherosclerosis Risk in Communities Hearing Pilot Study. Am J Audiol 2019; 28: 1006-1014
- 144 Iliadou V, Kaprinis S. Clinical psychoacoustics in Alzheimer’s disease central auditory processing disorders and speech deterioration. Ann Gen Hosp Psychiatry 2003; 2: 12
- 145 Tarawneh HY, Menegola HK, Peou A. et al. Central Auditory Functions of Alzheimer’s Disease and Its Preclinical Stages: A Systematic Review and Meta-Analysis. Cells 2022; 11: 1007
- 146 Powell DS, Oh ES, Reed NS. et al. Hearing Loss and Cognition: What We Know and Where We Need to Go. Front Aging Neurosci 2022; 13
- 147 Golob EJ, Ringman JM, Irimajiri R. et al. Cortical event-related potentials in preclinical familial Alzheimer disease. Neurology 2009; 73: 1649-1655
- 148 Tönges L, Ehret R, Lorrain M. et al. Epidemiologie der Parkinsonerkrankung und aktuelle ambulante Versorgungskonzepte in Deutschland. Fortschritte Neurol · Psychiatr 2017; 85: 329-335
- 149 de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5: 525-535
- 150 Heinzel S, Berg D, Binder S. et al. Do We Need to Rethink the Epidemiology and Healthcare Utilization of Parkinson’s Disease in Germany?. Front Neurol 2018; 9: 500
- 151 Pringsheim T, Jette N, Frolkis A. et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord Off J Mov Disord Soc 2014; 29: 1583-1590
- 152 Bach J-P, Ziegler U, Deuschl G. et al. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord Off J Mov Disord Soc 2011; 26: 2286-2290
- 153 Poewe W, Seppi K, Tanner CM. et al. Parkinson disease. Nat Rev Dis Primer 2017; 3: 17013
- 154 Antony PMA, Diederich NJ, Krüger R. et al. The hallmarks of Parkinson’s disease. FEBS J 2013; 280: 5981-5993
- 155 Kalia LV, Lang AE. Parkinson’s disease. Lancet Lond Engl 2015; 386: 896-912
- 156 Williams-Gray CH, Worth PF. Parkinson’s disease. Medicine (Baltimore) 2016; 44: 542-546
- 157 Chaudhuri KR, Healy DG, Schapira AHV. et al. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006; 5: 235-245
- 158 Riedel O, Klotsche J, Spottke A. et al. Cognitive impairment in 873 patients with idiopathic Parkinson’s disease. Results from the German Study on Epidemiology of Parkinson’s Disease with Dementia (GEPAD). J Neurol 2008; 255: 255-264
- 159 Aarsland D, Andersen K, Larsen JP. et al. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 2001; 56: 730-736
- 160 Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord Off J Mov Disord Soc 2004; 19: 1043-1049
- 161 Williams-Gray CH, Mason SL, Evans JR. et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry 2013; 84: 1258-1264
- 162 Lai S-W, Liao K-F, Lin C-L. et al. Hearing loss may be a non-motor feature of Parkinson’s disease in older people in Taiwan. Eur J Neurol 2014; 21: 752-757
- 163 Vitale C, Marcelli V, Allocca R. et al. Hearing impairment in Parkinson’s disease: expanding the nonmotor phenotype. Mov Disord Off J Mov Disord Soc 2012; 27: 1530-1535
- 164 Vitale C, Marcelli V, Abate T. et al. Speech discrimination is impaired in parkinsonian patients: Expanding the audiologic findings of Parkinson’s disease. Parkinsonism Relat Disord 2016; 22: S138-S143
- 165 Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson’s Disease. Mov Disord Off J Mov Disord Soc 2020; 35: 537-550
- 166 Li S, Cheng C, Lu L. et al. Hearing Loss in Neurological Disorders. Front Cell Dev Biol 2021; 9: 716300
- 167 Simonet C, Bestwick J, Jitlal M. et al. Assessment of Risk Factors and Early Presentations of Parkinson Disease in Primary Care in a Diverse UK Population. JAMA Neurol 2022; 79: 359-369
- 168 Yýlmaz S, Karalý E, Tokmak A. et al. Auditory evaluation in Parkinsonian patients. Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol – Head Neck Surg 2009; 266: 669-671
- 169 Shetty K, Krishnan S, Thulaseedharan JV. et al. Asymptomatic Hearing Impairment Frequently Occurs in Early-Onset Parkinson’s Disease. J Mov Disord 2019; 12: 84-90
- 170 Scarpa A, Cassandro C, Vitale C. et al. A comparison of auditory and vestibular dysfunction in Parkinson’s disease and Multiple System Atrophy. Parkinsonism Relat Disord 2020; 71: 51-57
- 171 Leme MS, Sanches SGG, Carvallo RMM. Peripheral hearing in Parkinson’s disease: a systematic review. Int J Audiol 2022; 1-9
- 172 Pisani V, Sisto R, Moleti A. et al. An investigation of hearing impairment in de-novo Parkinson’s disease patients: A preliminary study. Parkinsonism Relat Disord 2015; 21: 987-991
- 173 Seidel K, Mahlke J, Siswanto S. et al. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol Zurich Switz 2015; 25: 121-135
- 174 Folmer RL, Vachhani JJ, Theodoroff SM. et al. Auditory Processing Abilities of Parkinson’s Disease Patients. BioMed Res Int 2017; 2017: 2618587
- 175 Neel AT. Effects of loud and amplified speech on sentence and word intelligibility in Parkinson disease. J Speech Lang Hear Res JSLHR 2009; 52: 1021-1033
- 176 Sisto R, Viziano A, Stefani A. et al. Lateralization of cochlear dysfunction as a specific biomarker of Parkinson’s disease. Brain Commun 2020; 2: fcaa144
- 177 Mollaei F, Shiller DM, Baum SR. et al. The Relationship Between Speech Perceptual Discrimination and Speech Production in Parkinson’s Disease. J Speech Lang Hear Res JSLHR 2019; 62: 4256-4268
- 178 Cochen De Cock V, de Verbizier D, Picot MC. et al. Rhythm disturbances as a potential early marker of Parkinson’s disease in idiopathic REM sleep behavior disorder. Ann Clin Transl Neurol 2020; 7: 280-287
- 179 Shalash AS, Hassan DM, Elrassas HH. et al. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease. Front Neurol 2017; 8: 55
- 180 Liu C, Zhang Y, Tang W. et al. Evoked potential changes in patients with Parkinson’s disease. Brain Behav 2017; 7: e00703
- 181 de Natale ER, Ginatempo F, Paulus KS. et al. Paired neurophysiological and clinical study of the brainstem at different stages of Parkinson’s Disease. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2015; 126: 1871-1878
- 182 Pötter-Nerger M, Govender S, Deuschl G. et al. Selective changes of ocular vestibular myogenic potentials in Parkinson’s disease. Mov Disord Off J Mov Disord Soc 2015; 30: 584-589
- 183 Heitland I, Kenemans JL, Oosting RS. et al. Auditory event-related potentials (P3a, P3b) and genetic variants within the dopamine and serotonin system in healthy females. Behav Brain Res 2013; 249: 55-64
- 184 Pfabigan DM, Seidel E-M, Sladky R. et al. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment. NeuroImage 2014; 96: 12-21
- 185 Schomaker J, Berendse HW, Foncke EMJ. et al. Novelty processing and memory formation in Parkinson’s disease. Neuropsychologia 2014; 62: 124-136
- 186 Solís-Vivanco R, Rodríguez-Violante M, Rodríguez-Agudelo Y. et al. The P3a wave: A reliable neurophysiological measure of Parkinson’s disease duration and severity. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2015; 126: 2142-2149
- 187 Solís-Vivanco R, Rodríguez-Violante M, Cervantes-Arriaga A. et al. Brain oscillations reveal impaired novelty detection from early stages of Parkinson’s disease. NeuroImage Clin 2018; 18: 923-931
- 188 Matsui H, Nishinaka K, Oda M. et al. Auditory event-related potentials in Parkinson’s disease: prominent correlation with attention. Parkinsonism Relat Disord 2007; 13: 394-398
- 189 Yilmaz FT, Özkaynak SS, Barçin E. Contribution of auditory P300 test to the diagnosis of mild cognitive impairment in Parkinson’s disease. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 2017; 38: 2103-2109
- 190 Fan W, Li J, Wei W. et al. Effects of rhythmic auditory stimulation on upper-limb movements in patients with Parkinson’s disease. Parkinsonism Relat Disord 2022; 101: 27-30
- 191 Trindade MFD, Viana RA. Effects of auditory or visual stimuli on gait in Parkinsonic patients: a systematic review. Porto Biomed J 2021; 6: e140
- 192 Koshimori Y, Thaut MH. Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson’s disease. Ageing Res Rev 2018; 47: 133-139
- 193 Slade K, Plack CJ, Nuttall HE. The Effects of Age-Related Hearing Loss on the Brain and Cognitive Function. Trends Neurosci 2020; 43: 810-821
- 194 Wayne RV, Johnsrude IS. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res Rev 2015; 23: 154-166
- 195 Uchida Y, Sugiura S, Nishita Y. et al. Age-related hearing loss and cognitive decline — The potential mechanisms linking the two. Auris Nasus Larynx 2019; 46: 1-9
- 196 Oluwole OG, James K, Yalcouye A. et al. Hearing loss and brain disorders: A review of multiple pathologies. Open Med Wars Pol 2022; 17: 61-69
- 197 Gallacher J, Ilubaera V, Ben-Shlomo Y. et al. Auditory threshold, phonologic demand, and incident dementia. Neurology 2012; 79: 1583-1590
- 198 Deal JA, Betz J, Yaffe K. et al. Hearing Impairment and Incident Dementia and Cognitive Decline in Older Adults: The Health ABC Study. J Gerontol A Biol Sci Med Sci 2017; 72: 703-709
- 199 Dryden A, Allen HA, Henshaw H. et al. The Association Between Cognitive Performance and Speech-in-Noise Perception for Adult Listeners: A Systematic Literature Review and Meta-Analysis. Trends Hear 2017; 21: 2331216517744675
- 200 Nasreddine ZS, Phillips NA, Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695-699
- 201 Folstein MF, Folstein SE, McHugh PR. „Mini-mental state“. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198
- 202 Teng EL, Chui HC. The Modified Mini-Mental State (3MS) examination. J Clin Psychiatry 1987; 48: 314-318
- 203 Jorgensen LE, Palmer CV, Pratt S. et al. The Effect of Decreased Audibility on MMSE Performance: A Measure Commonly Used for Diagnosing Dementia. J Am Acad Audiol 2016; 27: 311-323
- 204 Dupuis K, Pichora-Fuller MK, Chasteen AL. et al. Effects of hearing and vision impairments on the Montreal Cognitive Assessment. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2015; 22: 413-437
- 205 Wong CG, Rapport LJ, Billings BA. et al. Hearing loss and verbal memory assessment among older adults. Neuropsychology 2019; 33: 47-59
- 206 Völter C, Götze L, Bruene-Cohrs U. et al. Hören und Kognition: neurokognitive Testbatterien in der HNO-Heilkunde. HNO 2020; 68: 155-163
- 207 Speech understanding and aging Working Group on Speech Understanding and Aging. Committee on Hearing, Bioacoustics, and Biomechanics, Commission on Behavioral and Social Sciences and Education, National Research Council. J Acoust Soc Am 1988; 83: 859-895
- 208 Lindenberger U, Baltes PB. Sensory functioning and intelligence in old age: a strong connection. Psychol Aging 1994; 9: 339-355
- 209 Kiely KM, Gopinath B, Mitchell P. et al. Cognitive, health, and sociodemographic predictors of longitudinal decline in hearing acuity among older adults. J Gerontol A Biol Sci Med Sci 2012; 67: 997-1003
- 210 Pichora-Fuller MK. Cognitive aging and auditory information processing. Int J Audiol 2003; 42: 2S26-32S26
- 211 McCoy SL, Tun PA, Cox LC. et al. Hearing loss and perceptual effort: downstream effects on older adults’ memory for speech. Q J Exp Psychol A 2005; 58: 22-33
- 212 Wong PCM, Ettlinger M, Sheppard JP. et al. Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 2010; 31: 471-479
- 213 Sheppard JP, Wang J-P, Wong PCM. Large-scale cortical functional organization and speech perception across the lifespan. PloS One 2011; 6: e16510
- 214 Eckert MA, Vaden KI, Dubno JR. Age-Related Hearing Loss Associations With Changes in Brain Morphology. Trends Hear 2019; 23: 2331216519857267
- 215 Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci 2012; 35: 111-122
- 216 Kral A. Auditory critical periods: a review from system’s perspective. Neuroscience 2013; 247: 117-133
- 217 Vernon M. Fifty Years of Research on the Intelligence of Deaf and Hard-of-Hearing Children: A Review of Literature and Discussion of Implications. J Deaf Stud Deaf Educ 2005; 10: 225-231
- 218 Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev 1996; 103: 403-428
- 219 Lipnicki DM, Crawford JD, Dutta R. et al. Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study. PLoS Med 2017; 14: e1002261
- 220 Laughlin GA, McEvoy LK, Barrett-Connor E. et al. Fetuin-A, a new vascular biomarker of cognitive decline in older adults. Clin Endocrinol (Oxf) 2014; 81: 134-140
- 221 Jayakody DMP, Wishart J, Stegeman I. et al. Is There an Association Between Untreated Hearing Loss and Psychosocial Outcomes?. Front Aging Neurosci 2022; 14: 868673
- 222 Pasta A, Szatmari T-I, Christensen JH. et al. Clustering Users Based on Hearing Aid Use: An Exploratory Analysis of Real-World Data. Front Digit Health 2021; 3: 725130
- 223 Lindenberger U, Ghisletta P. Cognitive and sensory declines in old age: gauging the evidence for a common cause. Psychol Aging 2009; 24: 1-16
- 224 Deal JA, Goman AM, Albert MS. et al. Hearing treatment for reducing cognitive decline: Design and methods of the Aging and Cognitive Health Evaluation in Elders randomized controlled trial. Alzheimers Dement N Y N 2018; 4: 499-507
- 225 Amieva H, Ouvrard C, Giulioli C. et al. Self-Reported Hearing Loss, Hearing Aids, and Cognitive Decline in Elderly Adults: A 25-Year Study. J Am Geriatr Soc 2015; 63: 2099-2104
- 226 Ray J, Popli G, Fell G. Association of Cognition and Age-Related Hearing Impairment in the English Longitudinal Study of Ageing. JAMA Otolaryngol-- Head Neck Surg 2018; 144: 876-882
- 227 Maharani A, Dawes P, Nazroo J. et al. Longitudinal Relationship Between Hearing Aid Use and Cognitive Function in Older Americans. J Am Geriatr Soc 2018; 66: 1130-1136
- 228 Sanders ME, Kant E, Smit AL. et al. The effect of hearing aids on cognitive function: A systematic review. PloS One 2021; 16: e0261207
- 229 Dawes P, Cruickshanks KJ, Fischer ME. et al. Hearing-aid use and long-term health outcomes: Hearing handicap, mental health, social engagement, cognitive function, physical health, and mortality. Int J Audiol 2015; 54: 838-844
- 230 Olze H, Knopke S, Gräbel S. et al. Rapid Positive Influence of Cochlear Implantation on the Quality of Life in Adults 70 Years and Older. Audiol Neurootol 2016; 21: 43-47
- 231 Knopke S, Häussler S, Gräbel S. et al. Age-Dependent Psychological Factors Influencing the Outcome of Cochlear Implantation in Elderly Patients. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2019; 40: e441-e453
- 232 Shin YJ, Fraysse B, Deguine O. et al. Benefits of cochlear implantation in elderly patients. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg 2000; 122: 602-606
- 233 Pasanisi E, Bacciu A, Vincenti V. et al. Speech recognition in elderly cochlear implant recipients. Clin Otolaryngol Allied Sci 2003; 28: 154-157
- 234 Vermeire K, Brokx JPL, Wuyts FL. et al. Quality-of-life benefit from cochlear implantation in the elderly. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2005; 26: 188-195
- 235 Moberly AC, Lewis JH, Vasil KJ. et al. Bottom-Up Signal Quality Impacts the Role of Top-Down Cognitive-Linguistic Processing During Speech Recognition by Adults with Cochlear Implants. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2021; 42: S33-S41
- 236 Tao D, Deng R, Jiang Y. et al. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users. PloS One 2014; 9: e99096
- 237 Moberly AC, Houston DM, Harris MS. et al. Verbal working memory and inhibition-concentration in adults with cochlear implants. Laryngoscope Investig Otolaryngol 2017; 2: 254-261
- 238 Winn MB. Rapid Release From Listening Effort Resulting From Semantic Context, and Effects of Spectral Degradation and Cochlear Implants. Trends Hear 2016; 20: 2331216516669723
- 239 Mosnier I, Bebear J-P, Marx M. et al. Improvement of cognitive function after cochlear implantation in elderly patients. JAMA Otolaryngol-- Head Neck Surg 2015; 141: 442-450
- 240 Mosnier I, Vanier A, Bonnard D. et al. Long-Term Cognitive Prognosis of Profoundly Deaf Older Adults After Hearing Rehabilitation Using Cochlear Implants. J Am Geriatr Soc 2018; 66: 1553-1561
- 241 Castiglione A, Benatti A, Velardita C. et al. Aging, Cognitive Decline and Hearing Loss: Effects of Auditory Rehabilitation and Training with Hearing Aids and Cochlear Implants on Cognitive Function and Depression among Older Adults. Audiol Neurootol 2016; 21: 21-28
- 242 Cosetti MK, Pinkston JB, Flores JM. et al. Neurocognitive testing and cochlear implantation: insights into performance in older adults. Clin Interv Aging 2016; 11: 603-613
- 243 Sonnet M-H, Montaut-Verient B, Niemier J-Y. et al. Cognitive Abilities and Quality of Life After Cochlear Implantation in the Elderly. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2017; 38: e296-e301
- 244 Jayakody DMP, Friedland PL, Nel E. et al. Impact of Cochlear Implantation on Cognitive Functions of Older Adults: Pilot Test Results. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2017; 38: e289-e295
- 245 Mertens G, Andries E, Claes AJ. et al. Cognitive Improvement After Cochlear Implantation in Older Adults With Severe or Profound Hearing Impairment: A Prospective, Longitudinal, Controlled, Multicenter Study. Ear Hear 2021; 42: 606-614
- 246 Völter C, Götze L, Bajewski M. et al. Cognition and Cognitive Reserve in Cochlear Implant Recipients. Front Aging Neurosci 2022; 14: 838214
- 247 Völter C, Götze L, Haubitz I. et al. Impact of Cochlear Implantation on Neurocognitive Subdomains in Adult Cochlear Implant Recipients. Audiol Neurootol 2021; 26: 236-245
- 248 Völter C, Götze L, Dazert S. et al. Can cochlear implantation improve neurocognition in the aging population?. Clin Interv Aging 2018; 13: 701-712
- 249 Huber M, Roesch S, Pletzer B. et al. Can Cochlear Implantation in Older Adults Reverse Cognitive Decline Due to Hearing Loss?. Ear Hear 2021; 42: 1560-1576
- 250 Knopke S, Schubert A, Häussler SM. et al. Improvement of Working Memory and Processing Speed in Patients over 70 with Bilateral Hearing Impairment Following Unilateral Cochlear Implantation. J Clin Med 2021; 10: 3421
- 251 Sarant J, Harris D, Busby P. et al. The Effect of Cochlear Implants on Cognitive Function in Older Adults: Initial Baseline and 18-Month Follow Up Results for a Prospective International Longitudinal Study. Front Neurosci 2019; 13: 789
- 252 Zhan KY, Lewis JH, Vasil KJ. et al. Cognitive Functions in Adults Receiving Cochlear Implants: Predictors of Speech Recognition and Changes After Implantation. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2020; 41: e322-e329