Synlett 2023; 34(12): 1497-1501
DOI: 10.1055/a-1995-5791
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Rhodium-Catalyzed N-Reverse Prenylation of Nonactivated Indoles

Minghe Sun
,
Linsheng Wei
,
Changkun Li
This work was supported by National Key R&D Program of China (2021YFB4001100, 2021YFB4001101).


Abstract

The N-reverse prenylated indole motif is an important structure in natural products and biologically active molecules. Nevertheless, the direct N-reverse prenylation of nonactivated indoles is challenging. We report a rhodium-catalyzed regioselective N-reverse prenylation of indoles bearing various functional groups under neutral conditions. The triphenyl phosphite ligand and acetonitrile solvent together play a key role in the reactivity and selectivity.

Supporting Information



Publication History

Received: 24 October 2022

Accepted after revision: 09 December 2022

Accepted Manuscript online:
09 December 2022

Article published online:
11 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Offerman SC, Kadirvel M, Abusara OH, Bryant JL, Telfer BA, Brown G, Freeman S, White A, Williams KJ, Aojula HS. Med. Chem. Commun. 2017; 8: 551
    • 2b Hu Y.-C, Min X.-T, Ji D.-W, Chen Q.-A. Trends Chem. 2022; 4: 658
    • 3a Baran PS, Guerrero CA, Corey EJ. J. Am. Chem. Soc. 2003; 125: 5628
    • 3b Pirrung MC, Li Z, Park K, Zhu J. J. Org. Chem. 2002; 67: 7919
  • 4 Fletcher AJ, Bax MN, Willis MC. Chem. Commun. 2007; 4764
  • 5 Luzung MR, Lewis CA, Baran PS. Angew. Chem. Int. Ed. 2009; 48: 7025
  • 6 Johnson KF, Van Zeeland R, Stanley LM. Org. Lett. 2013; 15: 2798
  • 7 Sun M, Liu M, Li C. Chem. Eur. J. 2021; 27: 3457
  • 8 Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 7762
  • 9 Yin G, Kalvet I, Englert U, Schoenebeck F. J. Am. Chem. Soc. 2015; 137: 4164
    • 10a Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11430
    • 10b Ghorai S, Rehman SU, Xu W.-B, Huang W.-Y, Li C. Org. Lett. 2020; 22: 3519
    • 10c Xu W.-B, Ghorai S, Huang W, Li C. ACS Catal. 2020; 10: 4491
    • 10d Huang W.-Y, Lu C.-H, Ghorai S, Li B, Li C. J. Am. Chem. Soc. 2020; 142: 15276
    • 10e Li K, Li C. Org. Lett. 2020; 22: 9456
    • 10f Liu M, Zhao H, Li C. Chin. Chem. Lett. 2021; 32: 385
    • 10g Xu W.-B, Sun M, Shu M, Li C. J. Am. Chem. Soc. 2021; 143: 8255
    • 10h Li B, Liu M, Rehman SU, Li C. J. Am. Chem. Soc. 2022; 144: 2893
    • 11a Hu Y.-C, Ji D.-W, Zhao C.-Y, Zheng H, Chen Q.-A. Angew. Chem. Int. Ed. 2019; 58: 5438
    • 11b Jiang W.-S, Ji D.-W, Zhang W.-S, Zhang G, Min X.-T, Hu Y.-C, Jiang X.-L, Chen Q.-A. Angew. Chem. Int. Ed. 2021; 60: 8321
  • 13 4-Chloro-1-(1,1-dimethylprop-2-en-1-yl)-1H-indole (3ba); Typical Procedure In a glove box, a pressure tube equipped with a magnetic stirrer bar was charged with [Rh(cod)Cl]2 (2.5 mol%, 2.4 mg) and MeCN (1 mL). P(OPh)3 (5 mol%, 2.6 μL) was added, and the solution was stirred for 10 min. Carbonate 2a′ (5.0 equiv, 200 µL) and 4-chloroindole (1b; 1.0 equiv, 30.2 mg) were added to the reaction tube, which was then sealed with a PTFE-lined cap and heated in an oil bath at 100 °C for 48 h. The crude reaction mixture was cooled and concentrated, and the residue was directly purified to flash column chromatography (silica gel) to give a yellow oil; yield: 29.3 mg (67%). 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, J = 8.3 Hz, 1 H), 7.35 (d, J = 3.4 Hz, 1 H), 7.12–7.00 (m, 2 H), 6.61 (dd, J = 3.4, 0.5 Hz, 1 H), 6.13 (dd, J = 17.5, 10.7 Hz, 1 H), 5.22 (dd, J = 34.9, 11.4 Hz, 2 H), 1.76 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 143.74, 136.01, 128.65, 125.97, 125.70, 121.19, 118.88, 113.83, 112.47, 99.23, 59.45, 27.96. HRMS (ESI): m/z [M + H]+ calcd for C13H15ClN: 220.0893; found: 220.0888.