Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(12): 1497-1501
DOI: 10.1055/a-1995-5791
DOI: 10.1055/a-1995-5791
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science
Rhodium-Catalyzed N-Reverse Prenylation of Nonactivated Indoles
This work was supported by National Key R&D Program of China (2021YFB4001100, 2021YFB4001101).
Abstract
The N-reverse prenylated indole motif is an important structure in natural products and biologically active molecules. Nevertheless, the direct N-reverse prenylation of nonactivated indoles is challenging. We report a rhodium-catalyzed regioselective N-reverse prenylation of indoles bearing various functional groups under neutral conditions. The triphenyl phosphite ligand and acetonitrile solvent together play a key role in the reactivity and selectivity.
Key words
indoles - reverse prenylation - rhodium catalysis - allylic substitution - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1995-5791.
- Supporting Information
Publication History
Received: 24 October 2022
Accepted after revision: 09 December 2022
Accepted Manuscript online:
09 December 2022
Article published online:
11 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Cheng Y, Tang S, Guo Y, Ye T. Org. Lett. 2018; 20: 6166
- 1b Barbie P, Kazmaier U. Org. Biomol. Chem. 2015; 13: 9267
- 1c Kim DE, Zweig JE, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 1479
- 1d Wen S.-J, Yao Z.-J. Org. Lett. 2004; 6: 2721
- 2a Offerman SC, Kadirvel M, Abusara OH, Bryant JL, Telfer BA, Brown G, Freeman S, White A, Williams KJ, Aojula HS. Med. Chem. Commun. 2017; 8: 551
- 2b Hu Y.-C, Min X.-T, Ji D.-W, Chen Q.-A. Trends Chem. 2022; 4: 658
- 3a Baran PS, Guerrero CA, Corey EJ. J. Am. Chem. Soc. 2003; 125: 5628
- 3b Pirrung MC, Li Z, Park K, Zhu J. J. Org. Chem. 2002; 67: 7919
- 4 Fletcher AJ, Bax MN, Willis MC. Chem. Commun. 2007; 4764
- 5 Luzung MR, Lewis CA, Baran PS. Angew. Chem. Int. Ed. 2009; 48: 7025
- 6 Johnson KF, Van Zeeland R, Stanley LM. Org. Lett. 2013; 15: 2798
- 7 Sun M, Liu M, Li C. Chem. Eur. J. 2021; 27: 3457
- 8 Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 7762
- 9 Yin G, Kalvet I, Englert U, Schoenebeck F. J. Am. Chem. Soc. 2015; 137: 4164
- 10a Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11430
- 10b Ghorai S, Rehman SU, Xu W.-B, Huang W.-Y, Li C. Org. Lett. 2020; 22: 3519
- 10c Xu W.-B, Ghorai S, Huang W, Li C. ACS Catal. 2020; 10: 4491
- 10d Huang W.-Y, Lu C.-H, Ghorai S, Li B, Li C. J. Am. Chem. Soc. 2020; 142: 15276
- 10e Li K, Li C. Org. Lett. 2020; 22: 9456
- 10f Liu M, Zhao H, Li C. Chin. Chem. Lett. 2021; 32: 385
- 10g Xu W.-B, Sun M, Shu M, Li C. J. Am. Chem. Soc. 2021; 143: 8255
- 10h Li B, Liu M, Rehman SU, Li C. J. Am. Chem. Soc. 2022; 144: 2893
- 11a Hu Y.-C, Ji D.-W, Zhao C.-Y, Zheng H, Chen Q.-A. Angew. Chem. Int. Ed. 2019; 58: 5438
- 11b Jiang W.-S, Ji D.-W, Zhang W.-S, Zhang G, Min X.-T, Hu Y.-C, Jiang X.-L, Chen Q.-A. Angew. Chem. Int. Ed. 2021; 60: 8321
- 12a Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
- 12b Thoke MB, Kang Q. Synthesis 2019; 51: 2585
- 12c Grange RL, Clizbe EA, Evans PA. Synthesis 2016; 48: 2911. For the original work with Rh(I) and P(OPh)3, see:
- 12d Evans PA, Nelson JD. Tetrahedron Lett. 1998; 39: 1725
- 13 4-Chloro-1-(1,1-dimethylprop-2-en-1-yl)-1H-indole (3ba); Typical Procedure In a glove box, a pressure tube equipped with a magnetic stirrer bar was charged with [Rh(cod)Cl]2 (2.5 mol%, 2.4 mg) and MeCN (1 mL). P(OPh)3 (5 mol%, 2.6 μL) was added, and the solution was stirred for 10 min. Carbonate 2a′ (5.0 equiv, 200 µL) and 4-chloroindole (1b; 1.0 equiv, 30.2 mg) were added to the reaction tube, which was then sealed with a PTFE-lined cap and heated in an oil bath at 100 °C for 48 h. The crude reaction mixture was cooled and concentrated, and the residue was directly purified to flash column chromatography (silica gel) to give a yellow oil; yield: 29.3 mg (67%). 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, J = 8.3 Hz, 1 H), 7.35 (d, J = 3.4 Hz, 1 H), 7.12–7.00 (m, 2 H), 6.61 (dd, J = 3.4, 0.5 Hz, 1 H), 6.13 (dd, J = 17.5, 10.7 Hz, 1 H), 5.22 (dd, J = 34.9, 11.4 Hz, 2 H), 1.76 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 143.74, 136.01, 128.65, 125.97, 125.70, 121.19, 118.88, 113.83, 112.47, 99.23, 59.45, 27.96. HRMS (ESI): m/z [M + H]+ calcd for C13H15ClN: 220.0893; found: 220.0888.
For reviews see: