Subscribe to RSS
DOI: 10.1055/a-2012-4754
Iodide-Assisted Pd Catalysis as an Attractive Alternative to Rh Catalysis for the Industrially Relevant Isoselective Hydroformylation of Simple Aliphatic Alkenes
We acknowledge funding from the European Research Council (ERC StG no 804106), the Agence Nationale de la Recherche (French National Research Agency), and the Fondation Jean-Marie Lehn (ANR IdEx and ANR LabEx ‘Chemistry of Complex Systems’), the Conseil régional du Grand Est (Région Grand Est, ‘Contrat doctoral 2020’), and the Narodowa Agencja Wymiany Akademickiej (Polish National Agency for Academic Exchange, PPN/PPO/2020/1/00034).
Abstract
The hydroformylation of simple aliphatic alkenes, such as propylene, is one of the largest homogenous catalyzed processes in the chemical industry, producing over 10 million metric tons of different aldehydes each year. Typically, such processes are catalyzed by Co or Rh catalysts, yielding mostly linear aldehydes, such as n-butanal. However, the increasing demand for branched aldehydes, such as isobutanal, triggered further investigation to develop efficient isoselective protocols, which remain scarce. In this Synpacts article, we discuss our recent work on iodide-assisted Pd catalysis as an attractive alternative strategy for the development of isoselective methods. This article is presented considering the state of the art for Rh-catalyzed processes. Additionally, we discuss the limitations and challenges that need to be addressed in order to successfully transfer the technology to industry.
1 Introduction
2 State of the Art for the Isoselective Rh-Catalyzed Hydroformylation of Unbiased Aliphatic Alkenes
2.1 Decomposition-Driven Isoselectivity
2.2 Substrate-Dependent Isoselectivity
2.3 Equiselective Catalysis
2.4 Isoselective Rh Catalysts Bearing Small-Bite-Angle Ligands
2.5 Isoselective Rh Catalyst Bearing a Tridentate Ligand
2.6 Isoselective Catalysis Driven by Rh Encapsulation
2.7 Isoselective Catalysis Driven by Specific Noncovalent Substrate–Ligand Interactions
3 Pd-Catalyzed Isoselective Hydroformylation of Unbiased Aliphatic Alkenes
3.1 Selectivity Patterns in Pd-Catalyzed Hydroformylation of Alkenes
3.2 Unusual Iodide-Assisted Binuclear Pd(I)–Pd(I) Mechanism
3.3 Development of Pd-Catalyzed Isoselective Hydroformylation of Unbiased Aliphatic Alkenes
4 Conclusions and Outlook
Key words
hydroformylation - selectivity - palladium - transition metal - aldehydes - hydrocarbons - isobutanalPublication History
Received: 16 November 2022
Accepted: 13 January 2023
Accepted Manuscript online:
13 January 2023
Article published online:
17 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Adkins H, Krsek G. J. Am. Chem. Soc. 1949; 71: 3051
- 2 Naqvi S. Oxo Alcohols. Process Economics Program Report 21E. SRI Consulting; Menlo Park, CA: 2010
- 3 Cornils B, Fischer RW, Kohlpaintner C. Butanals. In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000
- 4 Börner A, Franke R. Hydroformylations: Fundamentals, Processes and Applications in Organic Synthesis. Börner A, Franke R. Wiley-VCH; Weinheim: 2016
- 5 Franke R, Selent D, Börner A, Börner A. Chem. Rev. 2012; 112: 5675
- 6 Rhodium Catalyzed Hydroformylation . In Catalysis by Metal Complexes, Vol. 22. van Leeuwen PW. N. M, Claver C. Springer Netherlands; Dordrecht: 2002
- 7 Eastman’s Oxo Product Portfolio (accessed February 10, 2023). https://www.eastman.com/Technologies/Oxo_Technology_Licensing/Pages/Product_portfolio.aspx
- 8 Clarke M. Curr. Org. Chem. 2005; 9: 701
- 9 Taddei M, Mann A. Hydroformylation for Organic Synthesis, Vol. 342 . Springer; Berlin, Heidelberg: 2013
- 10 Ning Y, Ohwada T, Chen FE. Green Synth. Catal. 2021; 2: 247
- 11 Zhang Y, Torker S, Sigrist M, Bregović N, Dydio P. J. Am. Chem. Soc. 2020; 142: 18251
- 12 Sigrist M, Zhang Y, Antheaume C, Dydio P. Angew. Chem. Int. Ed. 2022; 61: e2021164
- 13 Nurttila SS, Linnebank PR, Krachko T, Reek JN. H. ACS Catal. 2018; 8: 3469
- 14 Slagt VF, Reek JN. H, Kamer PC. J, Van Leeuwen PW. N. M. Angew. Chem. Int. Ed. 2001; 40: 4271
- 15 Slagt VF, Kamer PC. J, Van Leeuwen PW. N. M, Reek JN. H. J. Am. Chem. Soc. 2004; 126: 1526
- 16 Besset T, Norman DW, Reek JN. H. Adv. Synth. Catal. 2013; 355: 348
- 17 Wang X, Nurttila SS, Dzik WI, Becker R, Rodgers J, Reek JN. H. Chem. Eur. J. 2017; 23: 14769
- 18 Baber RA, Clarke ML, Heslop KM, Marr AC, Orpen AG, Pringle PG, Ward A, Zambrano-Williams DE. Dalton Trans. 2005; 1079
- 19 Noonan GM, Fuentes JA, Cobley CJ, Clarke ML. Angew. Chem. Int. Ed. 2012; 51: 2477
- 20 How RC, Hembre R, Ponasik JA, Tolleson GS, Clarke ML. Catal. Sci. Technol. 2016; 6: 118
- 21 Dingwall P, Fuentes JA, Crawford LE, Slawin AM. Z, Bühl M, Clarke ML. J. Am. Chem. Soc. 2017; 139: 15921
- 22 Fuentes JA, Janka E, Rodgers J, Fontenot KJ, Bu M, Slawin AM. Z. Z, Clarke ML, Janka ME, Rodgers J, Fontenot KJ, Bühl M, Slawin AM. Z. Z, Clarke ML. Organometallics 2021; 40: 3966
- 23 Iu L, Fuentes JA, Janka ME, Fontenot KJ, Clarke ML. Angew. Chem. Int. Ed. 2019; 58: 2120
- 24 Ning Y, Chen F.-E. Green Synth. Catal. 2021; 2: 247
- 25 Kwok TJ, Wink DJ. Organometallics 1993; 12: 1954
- 26 Nozaki K, Nanno T, Takaya H. J. Organomet. Chem. 1997; 527: 103
- 27 Kranenburg M, van der Burgt YE. M, Kamer PC. J, van Leeuwen PW. N. M, Goubitz K, Fraanje J. Organometallics 1995; 14: 3081
- 28 Veth L, Dydio P. Nat. Chem. 2022; 14: 1088
- 29 Zuidema E, Goudriaan PE, Swennenhuis BH. G, Kamer PC. J, Van Leeuwen PW. N. M, Lutz M, Spek AL. Organometallics 2010; 29: 1210
- 30 Phanopoulos A, Nozaki K. ACS Catal. 2018; 8: 5799
- 31 Bellini R, Chikkali SH, Berthon-Gelloz G, Reek JN. H. Angew. Chem. Int. Ed. 2011; 50: 7342
- 32 Gadzikwa T, Bellini R, Dekker HL, Reek JN. H. J. Am. Chem. Soc. 2012; 134: 2860
- 33 Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Angew. Chem. Int. Ed. 2013; 52: 2852
- 34 Zhang Y, Sigrist M, Dydio P. Eur. J. Org. Chem. 2021; 5985
- 35 Kumar R, Chikkali SH. J. Organomet. Chem. 2022; 960: 122231
- 36 Drent E, Budzelaar PH. M. J. Organomet. Chem. 2000; 593–594: 211
- 37 Konya D, Almeida Leñero KQ, Drent E. Organometallics 2006; 25: 3166
- 38 Baya M, Houghton J, Konya D, Champouret Y, Daran JC, Almeida Leñero KQ, Schoon L, Mul WP, Van Oort AB, Meijboom N, Drent E, Orpen AG, Poli R. J. Am. Chem. Soc. 2008; 130: 10612
- 39 Jennerjahn R, Piras I, Jackstell R, Franke R, Wiese K.-D, Beller M. Chem. Eur. J. 2009; 15: 6383
- 40 Ishii Y, Miyashita K, Kamita K, Hidai M. J. Am. Chem. Soc. 1997; 119: 6448
- 41 Fang X, Zhang M, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 4645
- 42 Fang X, Jackstell R, Beller M. Chem. Eur. J. 2014; 20: 7939
- 43 Liu J, Wei Z, Yang J, Ge Y, Wei D, Jackstell R, Jiao H, Beller M. ACS Catal. 2020; 10: 12167
- 44 Li H, Dong K, Jiao H, Neumann H, Jackstell R, Beller M. Nat. Chem. 2016; 8: 1159
- 45 Hebrard F, Kalck P. Chem. Rev. 2009; 109: 4272
- 46 Klähn M, Garland MV. ACS Catal. 2015; 5: 2301
- 47 Broussard ME, Juma B, Train SG, Peng W.-J, Laneman SA, Stanley GG. Science 1993; 260: 1784
- 48 Organometallic Chemistry: Homo- and Heterobimetallic Complexes in Catalysis: Cooperative Catalysis, 1, 2016; 59.
- 49 Tolman CA. Chem. Rev. 1977; 77: 313
- 50 Martínez S, Veth L, Lainer B, Dydio P. ACS Catal. 2021; 11: 3891
- 51 Fiorito D, Scaringi S, Mazet C. Chem. Soc. Rev. 2021; 50: 1391
- 52 Vilches-Herrera M, Domke L, Börner A. ACS Catal. 2014; 4: 1706
- 53 Rodrigues FM. S, Kucmierczyk PK, Pineiro M, Jackstell R, Franke R, Pereira MM, Beller M. ChemSusChem 2018; 11: 2310
- 54 Gaide T, Bianga J, Schlipköter K, Behr A, Vorholt AJ. ACS Catal. 2017; 7: 4163
- 55 Goldbach V, Roesle P, Mecking S. ACS Catal. 2015; 5: 5951
- 56 Yuki Y, Takahashi K, Tanaka Y, Nozaki K. J. Am. Chem. Soc. 2013; 135: 17393
- 57 Hood DM, Johnson RA, Carpenter AE, Younker JM, Vinyard DJ, Stanley GG. Science 2020; 367: 542