RSS-Feed abonnieren
DOI: 10.1055/a-2021-9599
Solid-State Silver-Catalyzed Ring-Opening Fluorination of Cyclobutanols by Using Mechanochemistry
This work was financially supported by the Japan Society for the Promotion of Science (JSPS) via KAKENHI grants 22H00318, 21H01926, 22K18333, 22H05328, and 22K20523, by the JST via the CREST grant JPMJCR19R1, by the FOREST grant PJ2521A02I, and by the Institute for Chemical Reaction Design and Discovery (ICReDD), established by the World Premier International Research Initiative (WPI), MEXT, Japan.
Abstract
In this report, we demonstrate that a ball-milling technique facilitates fast and efficient silver-catalyzed ring-opening fluorination of cyclobutanols. This is the first report of a catalytic C–C bond-cleavage/functionalization reaction under solid-state mechanochemical conditions. The developed protocol affords a high yield of γ-fluorinated ketones within much shorter reaction times, and requires less silver catalyst and Selectfluor compared with the previous solution-based conditions. Notably, the process can be carried out in air. Because of the reduced use of chemicals and the simple time-saving experimental procedures, this technique is an efficient and environmentally friendly way to access γ-fluorinated ketones.
Key words
C–C bond cleavage - fluorination - mechanochemistry - ball-milling - solid-state chemistry - silver catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2021-9599.
- Supporting Information
Publikationsverlauf
Eingereicht: 18. November 2022
Angenommen nach Revision: 29. Januar 2023
Accepted Manuscript online:
29. Januar 2023
Artikel online veröffentlicht:
03. Mai 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
- 1b Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
- 1c Do J.-L, Friščić T. ACS Cent. Sci. 2017; 3: 13
- 1d Hernández JG, Bolm C. J. Org. Chem. 2017; 82: 4007
- 1e Métro T.-X, Martinez J, Lamaty F. ACS Sustainable Chem. Eng. 2017; 5: 9599
- 1f Achar TK, Bose A, Mal P. Beilstein J. Org. Chem. 2017; 13: 1907
- 1g Eguaogie O, Vyle JS, Conlon PF, Gîlea MA, Liang Y. Beilstein J. Org. Chem. 2018; 14: 955
- 1h Howard JL, Cao Q, Browne DL. Chem. Sci. 2018; 9: 3080
- 1i Andersen J, Mack J. Green Chem. 2018; 20: 1435
- 1j Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2019; 58: 3285
- 1k Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018
- 1l Kubota K, Ito H. Trends Chem. 2020; 2: 1066
- 1m Porcheddu A, Colacino E, De Luca L, Delogu F. ACS Catal. 2020; 10: 8344
- 1n Virieux D, Delogu F, Porcheddu A, García F, Colacino E. J. Org. Chem. 2021; 86: 13885
- 1o Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. ChemSusChem 2022; 15: e202200362
- 1p Shaw TE, Mathivathanan L, Jurca T. Organometallics 2019; 38: 4066
- 1q Hwang S, Grätz S, Borchardt L. Chem. Commun. 2022; 58: 1661
- 2a Kubota K, Pang Y, Miura A, Ito H. Science 2019; 366: 1500
- 2b Kubota K, Takahashi R, Ito H. Chem. Sci. 2019; 10: 5837
- 2c Kubota K, Seo T, Koide K, Hasegawa S, Ito H. Nat. Commun. 2019; 10: 111
- 2d Pang Y, Lee JW, Kubota K, Ito H. Angew. Chem. Int. Ed. 2020; 59: 22570
- 2e Seo T, Kubota K, Ito H. J. Am. Chem. Soc. 2020; 142: 9884
- 2f Seo T, Toyoshima T, Kubota K, Ito H. J. Am. Chem. Soc. 2021; 143: 6165
- 2g Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Angew. Chem. Int. Ed. 2021; 60: 16003
- 2h Takahashi R, Hu A, Gao P, Gao Y, Pang Y, Seo T, Maeda S, Jiang J, Takaya H, Kubota K, Ito H. Nat. Commun. 2021; 12: 6691
- 2i Kubota K, Kondo K, Seo T, Ito H. Synlett 2022; 33: 898
- 3a Colacino E, Isoni V, Crawford D, García F. Trends Chem. 2021; 3: 335
- 3b Ardila-Fierro KJ, Hernández JD. ChemSusChem 2021; 14: 2145
- 3c Fantozzi N, Volle J.-N, Porcheddu A, Virieux D, García F, Colacino E. ChemRxiv 2022; preprint
- 4a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 4b Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 4c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 4d Beger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
- 4e Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
- 4f Jacobson O, Kiesewetter DO, Chen X. Bioconjugate Chem. 2015; 26: 1
- 4g Gills EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 4h Yerien DE, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 8398
- 4i Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 4j Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
- 4k Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 5a Smart BE. J. Fluorine Chem. 2001; 109: 3
- 5b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 5c Han J, Kiss L, Haibo M, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
- 6a Lian T, Constanze NN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 6b Brooks AF, Topczewski JJ, Ichiishi N, Sanford MS, Scott PJ. H. Chem. Sci. 2014; 5: 4545
- 6c Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 6d Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
- 6e Szpera R, Moseley DF. J, Smith LB, Sterling AJ, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 14824
- 6f Bertrand X, Chabaud L, Paquin J.-F. Chem. Asian J. 2021; 16: 563
- 6g Suto A, Yamaguchi J. J. Synth. Org. Chem. Jpn. 2021; 79: 910
- 7a Nikolaev A, Orellana A. Synthesis 2016; 48: 1741
- 7b Murakami M, Ishida N. Chem. Lett. 2017; 46: 1692
- 7c Liu Y, Wang Q.-L, Chen Z, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-A, Zhou Q. Beilstein J. Org. Chem. 2019; 15: 256
- 7d Wu X, Zhu C. Chem. Commun. 2019; 55: 9747
- 7e Tsui E, Wang H, Knowles RR. Chem. Sci. 2020; 11: 11124
- 7f Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
- 7g McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3
- 8a Remete AM, Kiss L. Eur. J. Org. Chem. 2019; 5574
- 8b Ishida N, Okuma S, Nakanishi Y, Murakami M. Chem. Lett. 2015; 44: 821
- 8c Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
- 8d Ren S, Feng C, Loh T.-P. Org. Biomol. Chem. 2015; 13: 5105
- 8e Bloom S, Bume DD, Pitts CR, Lectka T. Chem. Eur. J. 2015; 21: 8060
- 8f Deng Y, Kauser NI, Islam SM, Mohr JT. Eur. J. Org. Chem. 2017; 5872
- 8g Lu Y.-C, Jordan HM, West JG. Chem. Commun. 2021; 57: 1871
- 8h Lu Y.-C, West JG. ACS Catal. 2021; 11: 12721
- 8i Wu P, Ma S. Org. Lett. 2021; 23: 2533
- 8j Pitts CR, Ling B, Snyder JA, Bragg AE, Lectka T. J. Am. Chem. Soc. 2016; 138: 6598
- 8k Banik SM, Mennie KM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 9152
- 8l Ilchenko NO, Hedberg M, Szabó KJ. Chem. Sci. 2017; 8: 1056
- 8m Wang M.-M, Waser J. Angew. Chem. Int. Ed. 2020; 59: 16420
- 8n Pitts CR, Bloom MS, Bume DD, Zhang QA, Lectka T. Chem. Sci. 2015; 6: 5225
- 8o Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 744
- 8p Kim D, Lim HN. Org. Lett. 2020; 22: 7465
- 8q Song JW, Lim HN. Org. Lett. 2021; 23: 5394
- 8r Roque JB, Kuroda Y, Göttemann LT, Sarapong R. Science 2018; 361: 171
- 8s Komatsuda M, Suto A, Kondo HJr, Hiroyuki T, Kato K, Saito B, Yamaguchi J. Chem. Sci. 2022; 13: 665
- 8t Komatsuda M, Ohki H, Kondo HJr, Suto A, Yamaguchi J. Org. Lett. 2022; 24: 3270
- 9a Wang Y, Wang H, Jiang Y, Zhang C, Shao J, Xu D. Green Chem. 2017; 19: 1674
- 9b Howard JL, Sagatov Y, Repusseau L, Schotten C, Browne DL. Green Chem. 2017; 19: 2798
- 9c Howard JL, Sagatov Y, Browne DL. Tetrahedron 2018; 74: 3118
- 10a Bowmaker GA. Chem. Commun. 2013; 49: 334
- 10b Ying P, Yu J, Su W. Adv. Synth. Catal. 2021; 363: 1246
- 11 Štefanić G, Krehula S, Štefanić I. Chem. Commun. 2013; 49: 9245
- 12a Hwang S, Grätz S, Borchardt L. Chem. Commun. 2022; 58: 1661
- 12b Fulmer DA, Shearouse WC, Medonza ST, Mack J. Green Chem. 2009; 11: 1821
- 12c Cook TL, Walker JA. Jr, Mack J. Green Chem. 2013; 15: 617
- 12d Yu J, Li Z, Jia K, Jiang Z, Liu M, Su W. Tetrahedron Lett. 2013; 54: 2006
- 12e Sawama Y, Niikawa M, Yabe Y, Goto R, Kawajiri T, Marumoto T, Takahashi T, Itoh M, Kimura Y, Sasai Y, Yamauchi Y, Kondo S, Kuzuya M, Monguchi Y, Sajiki H. ACS Sustainable Chem. Eng. 2015; 3: 683
- 12f Sawama Y, Kawajiri T, Niikawa M, Goto R, Yabe Y, Takahashi T, Marumoto T, Itoh M, Kimura Y, Monguchi Y, Kondo S, Sajiki H. ChemSusChem 2015; 8: 3773
- 12g Haley RA, Zellner AR, Krause JA, Guan H, Mack J. ACS Sustainable Chem. Eng. 2016; 4: 2464
- 12h Sawama Y, Yasukawa N, Bau K, Goto R, Niikawa M, Monoguchi Y, Itoh M, Sajiki H. Org. Lett. 2018; 20: 2892
- 12i Vogt CG, Grätz S, Lukin S, Halasz I, Etter M, Evans JD, Borchardt L. Angew. Chem. Int. Ed. 2019; 58: 18942
- 12j Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Kraus FJ. L, Etter M, Grätz S, Borchardt L. Angew. Chem. Int. Ed. 2022; e202205003
- 13 For silver-catalyzed ring expansion of cyclic alcohols, see: Yu J, Zhao H, Liang S, Bao X, Zhu C. Org. Biomol. Chem. 2015; 13: 7924
- 14 For dehydration reaction of tertiary cyclic alcohols using a copper catalyst and Selectfluor, see: Ren S, Zhang J, Zhang J, Wang H, Zhang W, Liu Y, Liu M. Eur. J. Org. Chem. 2015; 5381
- 15 4-Fluoro-1-phenylbutan-1-one (2a); Typical Procedure Cyclobutanol 1A (44.3 mg, 0.30 mmol, 1.0 equiv), AgF (1.9 mg, 0.015 mmol, 5.0 mol%), and Selectfluor (107.2 mg, 0.30 mmol, 1.0 equiv) were placed in a ball-milling vessel (ZrO2, 10 mL) loaded with one grinding ball (ZrO2; diameter: 10 mm). H2O (31 μL, 0.20 μL/mg) was added from a syringe. The vessel was then closed in air without purging with an inert gas, and placed in the ball mill (Retsch MM400) for 30 min at 15 Hz with heating by a heat gun to an internal temperature of 55 °C. After 30 min, H2O and Et2O were added and the mixture was extracted with Et2O (×3). The combined organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography [silica gel, hexane–EtOAc, 50:1] to give a colorless oil; yield: 33.8 mg (68%). 1H NMR (400 MHz, CDCl3): δ = 2.16 (d quint, J = 27.6, 6.4 Hz, 2 H), 3.16 (t, J = 6.4 Hz, 2 H), 4.57 (dt, J = 48.8, 6.4 Hz, 2 H), 7.48 (t, J = 8.0 Hz, 2 H), 7.58 (t, J = 8.0 Hz, 1 H), 7.99 (d, J = 8.0 Hz, 2 H). 13C NMR (101 MHz CDCl3): δ = 24.8 (d, J C–F = 20.2 Hz, CH2), 33.9 (d, J C–F = 4.8 Hz, CH2), 83.3 (d, J C–F = 165.9 Hz, CH2), 127.9 (CH), 128.6 (CH), 133.1 (CH), 136.7 (C), 199.0 (C). 19F NMR (376 MHz CDCl3): δ = –220.9 to –221.4 (m, 1 F). HRMS-EI: m/z [M]+ calcd for C10H11FO: 166.07939; found: 166.07934. The NMR spectra agreed with those reported in the literature.8h
For selected reviews on the use of ball-milling for organic synthesis, see:
For selected examples of solid-state organic transformations using ball-milling from our group, see:
For selected reviews, see:
For selected reviews of the ring-opening functionalization of cyclic alcohols, see:
For a review of ring-opening fluorination, see:
For selected examples of the ring-opening fluorination, see:
For selected examples of solid-state C(sp3)–F bond construction, see:
For selected examples of reactions in which a milling ball or jar works as a metal catalyst, see: