Subscribe to RSS
DOI: 10.1055/a-2039-9942
Visible-Light Photocatalytic Barbier-Type Reaction of Aziridines and Azetidines with Nonactivated Aldehydes
Financial support was provided by the National Natural Science Foundation of China (22101192), Sichuan Normal University (024-341914001), the Opening Foundation of the Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province (2021KFKT03), and the Fundamental Research Funds for the Central Universities.
![](https://www.thieme-connect.de/media/synlett/202312/lookinside/thumbnails/st-2023-k0033-c_10-1055_a-2039-9942-1.jpg)
Dedicated to Prof. Dr. Masahiro Murakami for his great contributions to science.
Abstract
Barbier-type reactions are a classic group of reactions for carbon–carbon bond formation; however, their common use of stoichiometric metals restricts their widespread application. Considering the ready availability and diversity of cyclic amines, we report a visible-light photocatalytic Barbier-type reaction of aziridines and azetidines with nonactivated aldehydes. A series of important γ- and δ-amino alcohols were synthesized in the presence of amines as electron donors. Moreover, this transition-metal-free protocol displays mild reaction conditions, broad functional-group tolerance, and a wide substrate scope. Mechanistic investigations indicated that carbon radicals and carbanions might be generated as key intermediates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2039-9942.
- Supporting Information
Publication History
Received: 25 January 2023
Accepted after revision: 21 February 2023
Accepted Manuscript online:
21 February 2023
Article published online:
08 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Metal Catalyzed Reductive C–C Bond Formation: A Departure from Preformed Organometallic Reagents. Krische M. J; Springer: Berlin: 2007
- 1b Brahmachari G. RSC Adv. 2016; 6: 64676
- 1c Yi L, Ji T, Chen K.-Q, Chen X.-Y, Rueping M. CCS Chem. 2022; 4: 9
- 2a Barbier P. C. R. Hebd. Seances Acad. Sci. 1899; 128: 110
- 2b Nokami J, Otera J, Sudo T, Okawara R. Organometallics 1983; 2: 191
- 2c Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
- 2d Li C.-J. Tetrahedron 1996; 52: 5643
- 2e Li C.-J, Zhang W.-C. J. Am. Chem. Soc. 1998; 120: 9102
- 2f Keinicke L, Fristrup P, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2005; 127: 15756
- 2g Frimpong K, Wzorek J, Lawlor C, Spencer K, Mitzel T. J. Org. Chem. 2009; 74: 5861
- 3a Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 3b Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
- 3c Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
- 3d Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
- 3e Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Acc. Chem. Res. 2021; 54: 2518
- 3f Ran C.-K, Xiao H.-Z, Liao L.-L, Ju T, Zhang W, Yu D.-G. Natl. Sci. Open 2022; 2: 20220024 ; DOI: 10.1360/nso/20220024
- 3g Dou D, Wang T.-M, Li S.-F, Fang L.-J, Zhai H.-B, Cheng B. Youji Huaxue 2022; 42: 4257 ; For selected examples, see
- 3h Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
- 3i Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
- 3j Ju T, Fu Q, Ye J.-H, Zhang Z, Liao L.-L, Yan S.-S, Tian X.-Y, Luo S.-P, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2018; 57: 13897
- 3k Fu Q, Bo Z.-Y, Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Nat. Commun. 2019; 10: 3592
- 3l Meng Q.-YSchirmer T. E, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11393
- 3m Zhou W.-J, Wang Z.-H, Liao L.-L, Jiang Y.-X, Cao K.-G, Ju T, Li Y, Cao G.-M, Yu D.-G. Nat. Commun. 2020; 11: 3263
- 3n Song L, Fu D.-M, Chen L, Jiang Y.-X, Ye J.-H, Zhu L, Lan Y, Fu Q, Yu D.-G. Angew. Chem. Int. Ed. 2020; 59: 21121
- 3o Jiang Y.-X, Chen L, Ran C.-K, Song L, Zhang W, Liao L.-L, Yu D.-G. ChemSusChem 2020; 13: 6312
- 3p Liao L.-L, Cao G.-M, Jiang Y.-X, Jin X.-H, Hu X.-L, Chruma JJ, Sun G.-Q, Gui Y.-Y, Yu D.-G. J. Am. Chem. Soc. 2021; 143: 2812
- 3q Niu Y.-N, Jin X.-H, Liao L.-L, Huang H, Yu B, Yu Y.-M, Yu D.-G. Sci. China Chem. 2021; 64: 1164
- 3r Cao G.-M, Hu X.-L, Liao L.-L, Yan S.-S, Song L, Chruma JJ, Gong L, Yu D.-G. Nat. Commun. 2021; 12: 3306
- 3s Ju T, Zhou Y.-Q, Cao K.-G, Fu Q, Ye J.-H, Sun G.-Q, Liu X.-F, Chen L, Liao L.-L, Yu D.-G. Nat. Catal. 2021; 4: 304
- 3t Yan S.-S, Liu S.-H, Chen L, Bo Z.-Y, Jing K, Gao T.-Y, Yu B, Lan Y, Luo S.-P, Yu D.-G. Chem 2021; 7: 3099
- 3u Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. ACS Catal. 2022; 12: 3974
- 3v Jing K, Wei M.-K, Yan S.-S, Liao L.-L, Niu Y.-N, Luo S.-P, Yu B, Yu D.-G. Chin. J. Catal. 2022; 43: 1667
- 3w Ran C.-K, Niu Y.-N, Song L, Wei M.-K, Cao Y.-F, Luo S.-P, Yu Y.-M, Liao L.-L, Yu D.-G. ACS Catal. 2022; 12: 18
- 3x Bo Z.-Y, Yan S.-S, Gao T.-Y, Song L, Ran C.-K, He Y, Zhang W, Cao G.-M, Yu D.-G. Chin. J. Catal. 2022; 43: 2388
- 4a Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
- 4b Berger AL, Donabauer K, König B. Chem. Sci. 2018; 9: 7230
- 4c Berger AL, Donabauer K, König B. Chem. Sci. 2019; 10: 10991
- 4d Wang S, Cheng B.-Y, Sršen M, König B. J. Am. Chem. Soc. 2020; 142: 7524
- 4e Zhang L, Chu Y, Ma P, Zhao S, Li Q, Chen B, Hong X, Sun J. Org. Biomol. Chem. 2020; 18: 1073
- 5a Couty F, Evano G. Synlett 2009; 3053
- 5b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 5c Singh GS. Mini-Rev. Med. Chem. 2016; 16: 892
- 5d Mehra V, Lumb I, Anand A, Kumar V. RSC Adv. 2017; 7: 45763
- 5e Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
- 5f Fu Z, Xu J. Huaxue Jinzhan 2018; 30: 1047
- 6a Singh GS. Adv. Heterocycl. Chem. 2019; 129: 245
- 6b Singh GS. Adv. Heterocycl. Chem. 2020; 130: 1
- 6c Mughal H, Szostak M. Org. Biomol. Chem. 2021; 19: 3274
- 7a Stanković S, D’hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
- 7b Chen X, Xu J. Huaxue Jinzhan 2017; 29: 181
- 7c Chu X, Chang H, Gao W, Wei W, Li X. Youji Huaxue 2017; 37: 2569
- 7d Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Russ. Chem. Rev. 2019; 88: 1104
- 7e Huo M, Bian Y, Yu C. Sci. China Chem. 2021; 64: 1778
- 7f Du Q, Zhang L, Gao F, Wang L, Zhang W. Youji Huaxue 2022; 42: 3240
- 8 Wang C. Synthesis 2017; 49: 5307
- 9a Almena J, Foubelo F, Yus M. Tetrahedron 1994; 50: 5775
- 9b Almena J, Foubelo F, Yus M. J. Org. Chem. 1994; 59: 3210
- 9c Ohno H, Hamaguchi H, Tanaka T. Org. Lett. 2000; 2: 2161
- 9d Takemoto Y, Anzai M, Yanada R, Fujii N, Ohno H, Ibuka T. Tetrahedron Lett. 2001; 42: 1725
- 9e Shimizu M, Nishiura S, Hachiya I. Heterocycles 2007; 74: 177
- 9f Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
- 9g Zhang Y.-Q, Vogelsang E, Qu Z.-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
- 9h Davies J, Janssen-Müller D, Zimin DP, Day CS, Yanagi T, Elfert J, Martin R. J. Am. Chem. Soc. 2021; 143: 4949
- 10a Larraufie M.-H, Pellet R, Fensterbank L, Goddard J.-P, Lacôte E, Malacria M, Ollivier C. Angew. Chem. Int. Ed. 2011; 50: 4463
- 10b Steiman TJ, Liu J, Mengiste A, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7598
- 10c Xu C.-H, Li J.-H, Xiang J.-N, Deng W. Org. Lett. 2021; 23: 3696
- 10d Chen L, Qu Q, Ran C.-K, Wang W, Zhang W, He Y, Liao L.-L, Ye J.-H, Yu D.-G. Angew. Chem. Int. Ed. 2023; 62: e202217918
- 11a Foley VM, McSweeney CM, Eccles KS, Lawrence SE, McGlacken GP. Org. Lett. 2015; 17: 5642
- 11b Tejo C, See YF. A, Mathiew M, Chan PW. H. Org. Biomol. Chem. 2016; 14: 844
- 11c Zhang Y.-Q, Bohle F, Bleith R, Schnakenburg G, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2018; 57: 13528
- 11d Wang X.-M, Liu Y.-W, Ma R.-J, Si C.-M, Wei B.-G. J. Org. Chem. 2019; 84: 11261
- 11e Ichikawa S, Buchwald SL. Org. Lett. 2019; 21: 8736
- 12a Ishitani O, Pac C, Sakurai H. J. Org. Chem. 1983; 48: 2941
- 12b Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
- 12c Annibaletto J, Jacob C, Theunissen C. Org. Lett. 2022; 24: 4170
- 13a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
- 13b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
- 13c Wang Y, Li F, Zeng Q. Acta Chim. Sin. (Engl. Ed.) 2022; 80: 386
- 14a Bamou FZ, Le TM, Volford B, Szekeres A, Szakonyi Z. Molecules 2020; 25: 21
- 14b Yang D, Xie C.-X, Wu X.-T, Fei L.-R, Feng L, Ma C. J. Org. Chem. 2020; 85: 14905
- 14c You H.-Y, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang XH, Guo J, Wang CH, He Y. J. Org. Chem. 2018; 83: 4119
- 14d Ma R, Young J, Promontorio R, Dannheim FM, Pattillo CC, White MC. J. Am. Chem. Soc. 2019; 141: 9468
- 14e Reddy RS, Zheng S, Lagishetti C, Youa H, He Y. RSC Adv. 2016; 6: 68199
- 14f Heravi MM, Lashaki TB, Fattahi B, Zadsirjan V. RSC Adv. 2018; 8: 6634
- 14g Pomplun S, Shugrue CR, Schmitt AM, Schissel CK, Farquhar CE, Pentelute BL. Angew. Chem. Int. Ed. 2020; 59: 11566
- 14h Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
- 14i Cossy J, Pardo DG, Dumas C, Mirguet O, Déchamps I, Métro T.-X, Burger B, Roudeau R, Appenzeller J, Cochi A. Chirality 2009; 21: 850
- 14j Chowdari NS, Ramachary DB, Barbas CF. Org. Lett. 2003; 5: 1685
- 14k Raji M, Le TM, Csámpai A, Nagy V, Zupkó I, Szakonyi Z. Synthesis 2022; 54: 3831
- 14l Mao P, Yang L, Xiao Y, Yuan J, Mai W, Gao J, Zhang X. Youji Huaxue 2019; 39: 443
- 14m Inuki S, Sato K, Fujimoto Y. Tetrahedron Lett. 2015; 56: 5787
- 14n Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
- 14o Shinichi I, Yoshiki S, Koichi I, Akira H, Seiichi N. Bull. Chem. Soc. Jpn. 1987; 60: 395
- 14p Zhou Z, Tan Y, Shen X. Sci. China Chem. 2021; 64: 452
- 15 Sterling AJ, Smith RC, Anderson EA, Duarte F. Chem. Rxiv. 2022; preprint; DOI:
- 16 tert-Butyl (3-Biphenyl-4-yl-4-hydroxy-6-phenylhexyl)carbamate ( 3aa): Typical ProcedureAn oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the 1a (0.2 mmol, 61.9 mg, 1 equiv) and 3DPAFIPN (0.004 mmol, 2.6 mg, 2 mol%). The Schlenk tube was then transferred to a glovebox where it was charged with PivOK (0.2 mmol, 28 mg, 1 equiv). The tube was taken out of the glovebox, connected to a vacuum line, and evacuated and back-filled with N2 three times. 2a (0.4 mmol, 53.7 mg, 2 equiv), DIPEA (0.4 mmol, 51.7 mg, 2 equiv), and DMA (2 mL) were then added under flowing N2. Finally, the mixture in the sealed tube was placed 1 cm from a 30 W blue LED lamp and stirred at rt (25 °C) for 36 h. The reaction was quenched with 2 N aq HCl (2 mL), and the mixture was extracted with EtOAc. The extracts were concentrated in vacuo and the residue was purified by flash chromatography [silica gel, PE–EtOAc (10:1 to 3:1)] to give a light yellow viscous liquid; yield: 73 mg (82%). 1H NMR (400 MHz, CDCl3, mixture of two diastereomers): δ = 7.61–7.48 (m, 4 H), 7.46–7.38 (m, 2 H), 7.35–7.12 (m, 7 H), 7.11–7.06 (m, 1 H), 4.57–4.44 (m, 1 H), 3.84–3.69 (m, 1 H), 3.15–2.88 (m, 2 H), 2.87–2.76 (m, 1 H), 2.73–2.55 (m, 2 H), 2.21–2.09 (m, 1 H), 1.98–1.80 (m, 2 H), 1.76–1.53 (m, 2 H), 1.41 (s, 9 H). 13C NMR (101 MHz, CDCl3, mixture of two diastereomers): δ = 156.2, 156.1, 142.14, 142.06, 140.93, 140.88, 140.86, 140.0, 139.7, 139.5, 129.4, 128.9, 128.8, 128.6, 128.54, 128.52, 128.47, 127.48, 127.47, 127.34, 127.31, 127.11, 127.09, 126.0, 125.9, 79.3, 75.1, 74.2, 49.9, 49.3, 39.2, 37.1, 36.8, 32.6, 32.4, 32.3, 32.0, 28.5. HRMS (ESI+): m/z [M + Na]+ calcd for C29H35NNaO3: 468.2509; found: 468.2506.
For selected reviews, see: