RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2023; 34(12): 1457-1461
DOI: 10.1055/a-2043-4862
DOI: 10.1055/a-2043-4862
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science
Facile Synthesis of Isoindolinones via Radical-Mediated Intramolecular Coupling of Two C–H Bonds
This work was supported by National Natural Science Foundation of China (No. 22171197), the Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions (21KJA150002), National Local Joint Engineering Laboratory to Functional Adsorption Material Technology for the Environmental Protection (SDGC2121) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) project. The project was also supported by the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University.
Abstract
A metal-free method for the construction of 3,3-dimethyl isoindolinones via radical-mediated intramolecular coupling of two C–H bonds of N,N-diisopropyl benzamides was developed. The reactions can proceed in moderate to high yield and with excellent chemoselectivity. A reaction sequence of the formation of an alkyl radical via oxidative cleavage of alkyl C–H bond and the formation of lactam ring via intramolecular homolytic aromatic substitution was proposed.
Key words
C–H activation - isoindolinone - homolytic aromatic substitution - alkyl radical - benzamideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2043-4862.
- Supporting Information
Publikationsverlauf
Eingereicht: 15. Januar 2023
Angenommen nach Revision: 27. Februar 2023
Accepted Manuscript online:
27. Februar 2023
Artikel online veröffentlicht:
17. März 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Speck K, Magauer T. Beilstein J. Org. Chem. 2013; 9: 2048
- 1b Bhatia RK. Curr. Top. Med. Chem. 2017; 17: 189
- 2a Heugebaert TS. A, Roman BI, Stevens CV. Chem. Soc. Rev. 2012; 41: 5626
- 2b Speck K, Magauer T. Beilstein J. Org. Chem. 2013; 9: 2048
- 2c Samanta S, Ali SA, Bera A, Giri S, Samanta K. New J. Chem. 2022; 46: 7780
- 3 For a recent review on isoindolinone synthesis via C–H activation, see: Savela R, Mendez-Galvez C. Chem. Eur. J. 2021; 27: 5344
- 4a Nack WA, Chen G. Synlett 2015; 26: 2505
- 4b Liu JC, Xiao X, Lai Y, Zhang Z. Org. Chem. Front. 2022; 9: 2256
- 4c Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
- 4d Mei TS, Kou L, Ma S, Engle KM. Yu J.-Q. Synthesis 2012; 44: 1778
- 4e Stokes BJ, Driver TG. Eur. J. Org. Chem. 2011; 4071
- 4f Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
- 4g Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
- 4h Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
- 4i Wolfe JP, Thomas JS. Curr. Org. Chem. 2005; 9: 625
- 5a Zhu C, Falk JR. Org. Lett. 2011; 13: 1214
- 5b Youn SW, Ko TY, Kim YH, Kim YA. Org. Lett. 2018; 20: 7869
- 5c Li D.-D, Yuan T.-T, Wang G.-W. Chem. Commun. 2011; 47: 12789
- 5d Xia C, White AJ. P, Hii KK. M. J. Org. Chem. 2016; 81: 7931
- 5e Zheng Q, Liu C.-F, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
- 5f Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 5g Luo H, Pei N, Zhang J. Chin. J. Org. Chem. 2021; 41: 2990
- 5h Bisht R, Haldar C, Hassan MM. M, Hoque ME, Chaturvedi J, Chattopadhyay B. Chem. Soc. Rev. 2022; 51: 5042
- 5i Wang J, Dong G. Chem. Rev. 2019; 119: 7478
- 6a Orito K, Horibata A, Nakamura T, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Tokuda M. J. Am. Chem. Soc. 2004; 126: 14342
- 6b Zhang C, Ding Y, Gao Y, Li S, Li G. Org. Lett. 2018; 20: 2595
- 6c Fu L.-Y, Ying J, Qi X, Peng J.-B, Wu X.-F. J. Org. Chem. 2019; 84: 1238
- 7a Nozawa-Kumada K, Kadokawa J, Kameyama T, Kondo Y. Org. Lett. 2015; 17: 4479
- 7b Bedford RB, Bowen JG, Méndez-Gálvez C. J. Org. Chem. 2017; 82: 1719
- 7c Yamamoto C, Takamatsu K, Hirano K, Miura M. J. Org. Chem. 2016; 81: 7675
- 8a Wertjes WC, Wolfe LC, Waller PJ, Kalyani D. Org. Lett. 2013; 15: 5986
- 8b Bhakuni BS, Yadav A, Kumar S, Petel S, Sharma S, Kumar S. J. Org. Chem. 2014; 79: 2944
- 8c Chen J.-Q, Wei Y.-L, Xu G.-Q, Liang Y.-M, Xu P.-F. Chem. Commun. 2016; 52: 6455
- 8d Dai P, Ma J, Huang W, Chen W, Wu N, Wu S, Li Y, Cheng X, Tan R. ACS Catal. 2018; 8: 802
- 8e Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Angew. Chem. Int. Ed. 2020; 59: 10316
- 9 For a rare example of an organometallic alkyl C–H arylation, see: Rousseaux S, Gorelsky SI, Chung BK. W, Fagnou K. J. Am. Chem. Soc. 2010; 132: 10692
- 10a Clayden J, Menet CJ. Tetrahedron Lett. 2003; 44: 3059
- 10b Clayden J, Menet CJ, Mansfield D. J. Org. Lett. 2000; 2: 4229
- 11a Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 11b Tian T, Li Z, Li C.-J. Green Chem. 2021; 23: 6789
- 11c Wu Y, Wang J, Mao F, Kwong FY. Chem. Asian J. 2014; 9: 26
- 11d Huang C.-Y, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
- 11e Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 11f RöckL J. l, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
- 11g Lv F, Yao Z.-J. Sci. Chin. Chem. 2017; 60: 701
- 11h Peng K, Dong Z.-B. Adv. Synth. Catal. 2021; 363: 1185
- 12a Tian H, Yang H, Zhu C, Fu H. Sci. Rep. 2016; 6: 19931
- 12b Guo D, Li B, Wang D.-Y, Gao Y.-R, Guo S.-H, Pan G.-F, Wang Y.-Q. Org. Lett. 2017; 19: 798
- 12c Clemenceau A, Thesmar P, Gicquel M, Flohic AL, Baudoin O. J. Am. Chem. Soc. 2020; 142: 15355
- 12d Romero AH. Top. Curr. Chem. 2019; 377: 21
- 12e Bagdi AK, Pattanayak P, Paul S, Mitra M, Choudhuri T, Sheikh AS. Adv. Synth. Catal. 2020; 362: 5601
- 13a Xu X, Zhou G, Ju G, Wang D, Li B, Zhao Y. Chin Chem. Lett. 2022; 33: 847
- 13b He G, Lu G, Guo Z, Liu P, Chen G. Nat. Chem. 2016; 8: 1131
- 13c Wang C, Chen C, Zhang J, Han J, Wang Q, Guo K, Liu P, Guan M, Yao Y, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 9884
- 13d He G, Lu C, Zhao Y, Nack WA, Chen G. Org. Lett. 2012; 14: 2944
- 13e Bai Z.-B, Tong H.-R, Wang H, Chen G, He G. Chin. J. Chem. 2019; 37: 119
- 14a Zheng Q, Liu CF, Chen J, Rao GW. Adv. Synth. Catal. 2020; 362: 1406
- 14b Liu G, Shen Y, Zhou Z, Lu X. Angew. Chem. Int. Ed. 2013; 52: 6033
- 14c Qiu F.-C, Yang W.-C, Chang Y.-Z, Guan B.-T. Asian J. Org. Chem. 2017; 6: 1361
- 14d Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
- 14e Gramage-Doria R. Chem. Eur J. 2020; 26: 9688
- 15 Representative Procedure for Isoindolone Synthesis The mixture of benzamide 1a (41.0 mg, 0.2 mmol), (NH4)2S2O8 (91.3 mg, 0.4 mmol), AcOH (34.4 μL, 0.6 mmol), and MeCN (1.0 mL) was sealed in a 15 mL glass vial under Ar with a ground-glass-type stopper. The reaction mixture was then stirred at 120 °C for 12 h before cooling to room temperature and being concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate: 10/1 to 5/1) to give the isoindolinone product 2a as a white solid (27.2 mg, 68%). 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 7.5 Hz, 1 H, ArH), 7.52–7.48 (m, 1 H, ArH), 7.42–7.38 (m, 1 H, ArH), 7.34 (d, J = 7.5 Hz, 1 H, ArH), 3.70–3.60 (m, 1 H, CH), 1.56 (d, J = 6.9 Hz, 6 H, CH3), 1.48 (s, 6 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 167.4, 151.4, 132.1, 131.4, 128.0, 123.4, 120.7, 63.4, 44.7, 25.6, 20.6. HRMS: m/z calcd for C13H17NNaO [M + Na]+: 226.1202; found: 226.1207.
Selected reviews on the general synthesis of isoindolinone:
Selected reviews on the synthesis of heterocycles via C–H activation:
Selected examples of isoindolinone via metal-catalyzed C–H carbonylation of benzylamines:
For selected reviews on cross-dehydrogenative coupling (CDC) reactions, see:
Selected examples of intramolecular coupling of two C–H bonds: