Synlett 2023; 34(12): 1447-1451
DOI: 10.1055/a-2059-3168
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Synthesis of 2-Sulfonylthiazoles via Heteroaryl C–H Sulfonylation of Thiazole N-Oxides

Hyun-Suk Um
,
Woong Sik Shin
,
Kyu Jin Son
,
Chulbom Lee
Support for this research was provided by the National Research Foundation (NRF) funded by the Ministry of Science and ICT of Korea (2020R1A2B5B03002271, 2021R1A5A6002803 and RS-2023-00208586).


This paper is dedicated to Professor Masahiro Murakami for his inspiring contributions to chemical science.

Abstract

Described here is an efficient method for the modular synthesis of 2-sulfonylthiazole derivatives via heteroaryl C–H sulfonylation. The protocol is composed of two stages involving O-activation of thiazole N-oxides and nucleophilic addition of a sulfinate, which induces N(3)-deoxygenation and C(2)-sulfonylation. The vicarious substitution is performed most effectively by using 4-methoxybenzoyl chloride for O-acylation while employing sodium [tert-butyl(dimethyl)silyloxy]methanesulfinate (TBSOMS-Na) as the nucleophile. The sulfones thus obtained can be converted to an array of thiazolyl sulfones, sulfonamides, and sulfonyl fluorides by displacing the silyloxymethyl moiety with alkyl, aryl, amino, and fluoro groups. The C–H sulfonylation approach, in combination with a sulfoxylate (SO2 2–) strategy, provides direct access to sulfonylated thiazole scaffolds without recourse to the use of 2-halothiazoles.

Supporting Information



Publication History

Received: 12 January 2023

Accepted after revision: 21 March 2023

Accepted Manuscript online:
21 March 2023

Article published online:
24 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Gupta RR, Kumar M, Gupta V. Heterocyclic Chemistry: Vol. II: Five-Membered Heterocycles . Springer; Berlin: 1999
    • 1b Comprehensive Heterocyclic Chemistry III, Vols. 3–6. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier Science; Amsterdam: 2008
    • 1c Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
    • 1d Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1e Kaur N. Metals and Non-Metals: Five-Membered N-Heterocycle Synthesis. CRC Press; Boca Raton: 2019
    • 2a Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
    • 2b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 2c Zhao C, Rakesh KP, Ravidar L, Fang W.-Y, Qin H.-L. Eur. J. Med. Chem. 2019; 162: 679
    • 3a Julia M, Paris J.-M. Tetrahedron Lett. 1973; 49: 4833
    • 3b Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002; 2563
    • 3c Sakaine G, Leitis Z, Ločmele R, Smits G. Eur. J. Org. Chem. 2022; e202201217
    • 4a Zhang D, Devarie-Baez NO, Li Q, Lancaster JR. Jr, Xian M. Org. Lett. 2012; 14: 3396
    • 4b Motiwala HF, Kuo Y.-H, Stinger BL, Palfey BA, Martin BR. J. Am. Chem. Soc. 2020; 142: 1801
    • 4c Wang X, Ye W, Kong T, Wang C, Ni C, Hu J. Org. Lett. 2021; 23: 8554
    • 4d Thierry T, Pfund E, Lequeux T. Chem. Eur. J. 2021; 27: 14826

      For reviews, see:
    • 5a Shaaban S, Liang S, Liu N.-W, Manolikakes G. Org. Biomol. Chem. 2017; 15: 1947
    • 5b Liang S, Hofman K, Friederich M, Keller J, Manolikakes G. ChemSusChem 2021; 14: 4878

      For conventional approaches toward sulfonylazoles, see:
    • 6a Gibbs EM, Robinson FA. J. Chem. Soc. 1945; 925
    • 6b Liang S, Zhang R.-Y, Xi L.-Y, Chen S.-Y, Yu X.-Q. J. Org. Chem. 2013; 78: 11874

    • For selected examples in cross-coupling settings, see:
    • 6c Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2014; 53: 10204
    • 6d Shyam PK, Jang H.-Y. J. Org. Chem. 2017; 82: 1761
    • 6e Liu N.-W, Liang S, Margraf N, Shaaban S, Luciano V, Drost M, Manolikakes G. Eur. J. Org. Chem. 2018; 1208

      For challenges and advances of azole halides in cross-coupling reactions, see:
    • 7a Hooper MW, Utsunomiya M, Hartwig JF. J. Org. Chem. 2003; 68: 2861
    • 7b Reichert EC, Feng K, Sather AC, Buchwald SL. J. Am. Chem. Soc. 2023; 145: 3323
    • 8a Um H.-S, Min J, An T, Choi J, Lee C. Org. Chem. Front. 2018; 5: 2158
    • 8b Kim D.-K, Um H.-S, Park H, Kim S, Choi J, Lee C. Chem. Sci. 2020; 11: 13071
    • 9a Yan G, Borah AJ, Yang M. Adv. Synth. Catal. 2014; 356: 2375
    • 9b Wang Y, Zhang L. Synthesis 2015; 47; 289
    • 9c Heterocyclic N-Oxides . Larionov OV. Springer; Cham: 2017
    • 9d Petrosyan A, Hauptmann R, Pospech J. Eur. J. Org. Chem. 2018; 5237
    • 9e Malykhin RS, Sukhorukov AY. Adv. Synth. Catal. 2021; 363: 3170
    • 9f Wang D, Désaubry L, Li G, Huang M, Zheng S. Adv. Synth. Catal. 2021; 363: 2
    • 9g Kaur R, Mandal S, Banerjee D, Yadav AK. ChemistrySelect 2021; 6: 2832
    • 9h Fershtat LL, Teslenko FE. Synthesis 2021; 53: 3673

    • For general remarks on C–H functionalization, see:
    • 9i Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 9j Metal Free C–H Functionalization of Aromatics: Nucleophilic Displacement of Hydrogen. Charushin V, Chupakhin O. Springer; Cham: 2014
    • 9k Fujiwara Y, Baran PS. In New Horizons of Process Chemistry: Scalable Reactions and Technologies . Tomioka T, Shioiri T, Sajiki H. Springer Nature; Singapore: 2017: 103

      For examples of deoxygenative C–H sulfonylation, see:
    • 10a Wang R, Zeng Z, Chen C, Yi N, Jiang J, Cao Z, Deng W, Xiang J. Org. Biomol. Chem. 2016; 14: 5317
    • 10b Peng S, Song Y.-X, He J.-Y, Tang S.-S, Tan J.-X, Cao Z, Lin Y.-W, He W.-M. Chin. Chem. Lett. 2019; 30: 2287
    • 10c Xie L.-Y, Fang T.-G, Tan J.-X, Zhang B, Cao Z, Yang L.-H, He W.-M. Green Chem. 2019; 21: 3858
    • 10d Patel TI, Laha R, Moschitto MJ. J. Org. Chem. 2022; 87: 15679

    • For an example of C–H sulfonylation without deoxygenation, see:
    • 10e Wu Z, Song H, Cui X, Pi C, Du W, Wu Y. Org. Lett. 2013; 15: 1270
    • 11a Campeau L.-C, Bertrand-Laperle M, Leclerc J.-P, Villemure E, Gorelsky S, Fagnou K. J. Am. Chem. Soc. 2008; 130: 3276
    • 11b Campeau L.-C, Stuart DR, Leclerc J.-P, Bertrand-Laperle M, Villemure E, Sun H.-Y, Lasserre S, Guimond N, Lecavallier M, Fagnou K. J. Am. Chem. Soc. 2009; 131: 3291
    • 11c Peng X, Huang P, Jiang L, Zhu J, Liu L. Tetrahedron Lett. 2016; 57: 5223
    • 11d Golding WA, Phipps RJ. Chem. Sci. 2020; 11: 3022
    • 12a Takamizawa A, Harada H. Chem. Pharm. Bull. 1973; 21: 770
    • 12b Szpunar M, Loska R. Eur. J. Org. Chem. 2015; 2133
    • 12c Ma S, Dang S, Rose JA, Rablen P, Herzon SB. J. Am. Chem. Soc. 2017; 139: 5998
    • 12d Mirabal RA, Vanderzwet L, Abuadas S, Emmett MR, Schipper D. Chem. Eur. J. 2018; 24: 12231
    • 12e Li H, Zhang J, Zhang Y, Wang J, Song G. Tetrahedron Lett. 2019; 60: 150825
    • 13a Begtrup M, Hansen LB. L. Acta Chem. Scand. 1992; 46: 372
    • 13b Zhu J, Kong Y, Lin F, Wang B, Chen Z, Liu L. Eur. J. Org. Chem. 2015; 1507
    • 13c Zhu J, Chen Y, Lin F, Wang B, Chen Z, Liu L. Org. Biomol. Chem. 2015; 13: 3711
    • 14a Thiazole and Its Derivatives . Metzger JV. Wiley; New York: 1979
    • 14b Roy RS, Gehring AM, Milne JC, Belshaw PJ, Walsh CT. Nat. Prod. Rep. 1999; 16: 249
    • 14c Dondoni A, Marra A. Chem. Rev. 2004; 104: 2557
    • 14d Lin Y, Fan H, Li Y, Zhan X. Adv. Mater. 2012; 24: 3087
    • 14e Chhabria MT, Patel S, Modi P, Brahmkshatriya PS. Curr. Top. Med. Chem. 2016; 16: 2841
    • 14f Jin Z. Nat. Prod. Rep. 2016; 33: 1268
    • 14g Sharma PC, Bansal KK, Sharma A, Sharma D, Deep A. Eur. J. Med. Chem. 2020; 188: 112016

      The attempted C–H sulfonylation via N-activation of benzothiazole using triflic anhydride led to extensive decomposition (see the Supporting Information for details). For reports on the direct N-activation approach to the C–H sulfonylation of azine-type N-heteroaromatics, see:
    • 15a Friedrich M, Schulz L, Hofman K, Zangl R, Morgner N, Shaaban S, Manolikakes G. Tetrahedron Chem 2022; 1: 100003
    • 15b Friedrich M, Manolikakes G. Eur. J. Org. Chem. 2022; e202200915
  • 16 Further attempts to extend the protocol to other azole systems met with little success (see the Supporting Information).
    • 17a Baskin JM, Wang Z. Tetrahedron Lett. 2002; 43: 8479
    • 17b Day JJ, Neill DL, Xu S, Xian M. Org. Lett. 2017; 19: 3819
    • 17c Zhang W, Luo M. Chem. Commun. 2016; 52: 2980
    • 17d Shavnya A, Coffey SB, Hesp KD, Ross SC, Tsai AS. Org. Lett. 2016; 18: 5848
    • 17e Wang M, Tang B.-C, Wang J.-G, Xiang J.-C, Guan A.-Y, Huang P.-P, Guo W.-Y, Wu Y.-D, Wu A.-X. Chem. Commun. 2018; 54: 7641
    • 17f Alvarez EM, Plutschack MB, Berger F, Ritter T. Org. Lett. 2020; 22: 4593
    • 17g Shavnya A, Hesp KD, Tsai AS. Adv. Synth. Catal. 2018; 360: 1768
  • 18 As with 3f, facile protodesulfonylation was observed in the attempted copper-catalyzed S-arylation of a ketosulfone substrate (Scheme 3, unpublished results from ref. 8b). Also examined were the reaction of 3f with iodobenzene under metallaphotoredox conditions and the S N Ar reaction employing an iodonium salt, both of which resulted in the formation of the protodesulfonylation product 4f (see the Supporting Information for details).
  • 19 2-[({[tert-Butyl(dimethyl)silyl]oxy}methyl)sulfonyl]-1,3-thiazole; Typical Procedure 4-methoxybenzoyl chloride (1.1 equiv, 0.44 mmol, 60 μL) was added dropwise to a solution of 1,3-thiazole N-oxide (2a; 0.4 mmol) and TBSOMS-Na (1; 1.5 equiv, 0.6 mmol, 0.1394 g) in anhyd DCM (2 mL), and the mixture was stirred at 30 ℃ for 2 h under atmospheric conditions. Organic fractions were gathered with DCM, washed with aq NaHCO3 and brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel) to afford the desired sulfone product 3f as a colorless liquid, yield: 85.7 mg (73%); Rf = 0.48 (hexane–EtOAc, 5:1). 1H NMR (500 MHz, CDCl3): δ = 8.10 (s, 1 H), 7.78 (s, 1 H), 4.95 (s, 2 H), 0.80 (s, 9 H), 0.06 (s, 6 H). 13C NMR (126 MHz, CDCl3): δ = 163.5, 145.4, 127.0, 79.5, 25.5, 18.3, –5.4. IR (neat): 3116, 2931, 2889, 2858, 1471, 1432, 1362, 1340, 1312, 1258, 1172, 1128, 1067, 1007, 939, 833, 784, 764, 728, 668, 544, 527, 463, 404 cm–1. HRMS (ESI): m/z [M + Na]+ calcd for C10H19NNaO3S2Si: 316.0468; found: 316.0468.