Synlett 2023; 34(20): 2447-2450
DOI: 10.1055/a-2088-9219
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto

Enantioselective Bromination of Silyl Enol Ethers with Chiral Pentacarboxycyclopentadienyl Bromide

Guo Liu
,
Pingfan Li
This work is supported by the Natural Science Foundation of Beijing Municipality (2202040).


Dedicated to Professor Hisashi Yamamoto on the occasion of his 80th birthday

Abstract

Chiral pentacarboxycyclopentadienyl bromide reagents were synthesized to accomplish enantioselective bromination of silyl enol ethers to give corresponding α-bromoketone products in good yields and up to 77% ee. A catalytic version of this reaction was also demonstrated through the combination of Lewis acid activators and diethyl 2,2-dibromomalonate as stoichiometric achiral bromine source.

Supporting Information



Publication History

Received: 17 April 2023

Accepted after revision: 08 May 2023

Accepted Manuscript online:
08 May 2023

Article published online:
14 June 2023

© 2023 . Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Schlama T, Baati R, Gouverneur V, Valleix A, Falck JR, Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2085
    • 1b Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M. J. Nat. Prod. 2002; 65: 395
    • 1c Landry ML, Hu DX, McKenna GM, Burns NZ. J. Am. Chem. Soc. 2016; 138: 5150
    • 2a Nakamura S, Kaneeda M, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2000; 122: 8120
    • 2b Zhang Y, Shibatomi K, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 15038
    • 2c Shibatomi K, Yamamoto H. Angew. Chem. 2008; 120: 5880
    • 3a Hintermann L, Togni A. Helv. Chim. Acta 2000; 83: 2425
    • 3b Frantz R, Hintermann L, Perseghini M, Broggini D, Togni A. Org. Lett. 2003; 5: 1709
    • 4a Hamashima Y, Sodeoka M. Chem. Rec. 2004; 4: 231
    • 4b Hamashima Y, Sodeoka M. Synlett 2006; 1467
    • 4c Suzuki T, Hamashima Y, Sodeoka M. Angew. Chem. Int. Ed. 2007; 46: 5435
    • 5a Cai Y, Liu X, Hui Y, Jiang J, Wang W, Chen W, Lin L, Feng X. Angew. Chem. Int. Ed. 2010; 49: 6160
    • 5b Huang S.-X, Ding K. Angew. Chem. Int. Ed. 2011; 50: 7734
    • 5c Cai Y, Liu X, Li J, Chen W, Wang W, Lin L, Feng X. Chem. Eur. J. 2011; 17: 14916
    • 5d Cai Y, Liu X, Jiang J, Chen W, Lin L, Feng X. J. Am. Chem. Soc. 2011; 133: 5636
    • 5e Zhou P, Lin L, Chen L, Zhong X, Liu X, Feng X. J. Am. Chem. Soc. 2017; 139: 13414
    • 5f Cai Y, Zhou P, Liu X, Zhao J, Lin L, Feng X. Chem. Eur. J. 2015; 21: 6386
    • 5g Wang Z, Lin L, Zhou P, Liu X, Feng X. Chem. Commun. 2017; 53: 3462
    • 6a Reddy DS, Shibata N, Horikawa T, Suzuki S, Nakamura S, Toru T, Shiro M. Chem. Asian J. 2009; 4: 1411
    • 6b Shibata N, Kohno J, Takai K, Ishimaru T, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2005; 44: 4204
    • 7a Wack H, Taggi AE, Hafez AM, Drury WJ, Lectka T. J. Am. Chem. Soc. 2001; 123: 1531
    • 7b Hafez AM, Taggi AE, Wack H, Esterbrook J, Lectka T. Org. Lett. 2001; 3: 2049
    • 7c Dogo-Isonagie C, Bekele T, France S, Wolfer J, Weatherwax A, Taggi AE, Lectka T. J. Org. Chem. 2006; 71: 8946
    • 8a Kim DY, Park EJ. Org. Lett. 2002; 4: 545
    • 8b Luo J, Wu W, Xu L.-W, Meng Y, Lu Y. Tetrahedron Lett. 2013; 54: 2623
    • 9a Brochu MP, Brown SP, MacMillan DW. C. J. Am. Chem. Soc. 2004; 126: 4108
    • 9b Halland N, Braunton A, Bachmann S, Marigo M, Jørgensen KA. J. Am. Chem. Soc. 2004; 126: 4790
    • 9c Marigo M, Bachmann S, Halland N, Braunton A, Jørgensen KA. Angew. Chem. Int. Ed. 2004; 116: 5623
    • 9d Bertelsen S, Halland N, Bachmann S, Marigo M, Braunton A, Jørgensen KA. Chem. Commun. 2005;
    • 9e Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
    • 9f Kano T, Shirozu F, Maruoka K. Chem. Commun. 2010; 46: 7590
    • 9g Takeshima A, Shimogaki M, Kano T, Maruoka K. ACS Catal. 2020; 10: 5959
  • 10 Cai Y, Wang W, Shen K, Wang J, Hu X, Lin L, Liu X, Feng X. Chem. Commun. 2010; 46: 1250
    • 11a Yang X, Phipps RJ, Toste FD. J. Am. Chem. Soc. 2014; 136: 5225
    • 11b Gao X, Han J, Wang L. Org. Lett. 2015; 17: 4596
    • 11c Guan X, An D, Liu G, Zhang H, Gao J, Zhou T, Zhang G, Zhang S. Tetrahedron Lett. 2018; 59: 2418
    • 11d Peng Y, Wang Z, Chen Y, Xu W, Hu Y, Chen Z, Xu J, Wu Q. Angew. Chem. Int. Ed. 2022; 61: e202211199
  • 12 Li J, An S, Yuan C, Li P. Synlett 2019; 30: 1317
    • 14a Shankel SL, Lambert TH, Fors BP. Polym. Chem. 2022; 13: 5974
    • 14b Kottisch V, Jermaks J, Mak J.-Y, Woltornist RA, Lambert TH, Fors BP. Angew. Chem. Int. Ed. 2021; 60: 4535
    • 15a Martin JC, Arhart RJ, Franz JA, Perozzi EF, Kaplan LJ. Org. Synth. 1977; 57: 22
    • 15b Martin JC, Arhart RJ. J. Am. Chem. Soc. 1971; 93: 2339
    • 16a Cookson RC, Henstock JB, Hudec J, Whitear BR. D. J. Chem. Soc. C. 1967; 1986
    • 16b Dushenko GA, Mikhailov IE, Mikhailova OI, Minyaev RM, Minkin VI. Russ. Chem. Bull. 2015; 64: 2043
  • 17 Typical Procedure for Synthesizing Product 3a To a solution of PCCP-Br 1a (88 mg, 0.083 mmol, 1.0 equiv) in dry DCM (1.5 mL) was added dropwise silyl enol ether (0.1 mmol, 1.2 equiv) at –78 °C. After 22 h, the reaction was quenched by the addition of saturated aqueous NaHCO3 (2 mL) and then extracted with dichloromethane (3 × 2 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate, 175:1 to 20:1) on silica gel to give 18.1 mg of 3a as colorless liquid (97% yield). The enantioselectivity was 69% ee, [α]D 25 +23.2 (c 0.19, CH2Cl2). HPLC conditions: Chiralpak AS-H column [hexanes/2-propanol = 98:2, flow rate = 1.0 mL/min), λ = 254 nm, t R (major) = 9.0 min, t R (minor) = 10.8 min. 1H NMR (400 MHz, CDCl3): δ = 8.09 (d, J = 7.7 Hz, 1 H), 7.54–7.50 (m, 1 H), 7.35 (t, J = 7.6 Hz, 1 H), 7.28 (d, J = 7.7 Hz, 1 H), 4,73 (t, J = 4.3 Hz, 1 H), 3.35–3.27 (m, 1 H), 2.92 (td, J = 17.2, 4.6 Hz, 1 H), 2.57–2.42 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 190.5, 142.9, 134.1, 129.9, 128.7, 128.6, 127.1, 50.4, 31.9, 26.1 ppm.