Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(04): 464-468
DOI: 10.1055/a-2106-5108
DOI: 10.1055/a-2106-5108
cluster
11th Singapore International Chemistry Conference (SICC-11)
Synthesis of Carbamoyl Azides from Redox-Active Esters and TMSN3
This work was supported by the National Natural Science Foundation of China (NSFC; Grant No. 22001251, 21871258, 21922112, and 22225107), the National Key Research and Development Program of China (Grant No. 2017YFA0700103), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000).
Abstract
An efficient method for construction of C–N bonds is reported here. The iron-catalyzed azidation of N-hydroxy phthalimide (NHP) esters provides a convenient approach for the synthesis of carbamoyl azides with good substrate scope and functional group tolerance. Both aryl carbon C(sp2) and alkyl carbon C(sp3) sources can be used deliver the carbamoyl azides. Mechanistic studies were conducted and a two-stage process was identified.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2106-5108.
- Supporting Information
Publication History
Received: 24 February 2023
Accepted after revision: 06 June 2023
Accepted Manuscript online:
06 June 2023
Article published online:
21 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yin XT, Li WJ, Zhao BL, Cheng K. Chin. J. Org. Chem. 2018; 38: 2879
- 1b Arshadi S, Ebrahimiasl S, Hosseinian A, Monfared A, Vessally E. RSC Adv. 2019; 9: 8964
- 1c Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Adv. Synth. Catal. 2020; 363: 937
- 1d Wang Y, Tian L, Zheng Y, Shao X, Ramadoss V. Synthesis 2020; 52: 1357
- 1e Yu W.-Y, Chan C.-M, Chow Y.-C. Synthesis 2020; 52: 2899
- 1f Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Adv. Synth. Catal. 2021; 363: 2678
- 1g Rivas M, Palchykov V, Jia X, Gevorgyan V. Nat. Rev. Chem. 2022; 6: 544
- 2a Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
- 2b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 3a Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron Lett. 1998; 39: 2933
- 3b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
- 4a Guram AS, Rennels RA, Buchwald SL. Angew. Chem., Int. Ed. Engl. 1995; 34: 1348
- 4b Louie J, Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
- 5a Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
- 5b Liu H.-Y, Lu Y, Li Y, Li J.-H. Org. Lett. 2020; 22: 8819
- 5c Liu X.-J, Zhou S.-Y, Xiao Y, Sun Q, Lu X, Li Y, Li J.-H. Org. Lett. 2021; 23: 7839
- 6a Goossen LJ, Rodriguez N, Goossen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 6b Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 6c Weaver JD, Recio A III, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 6d Dzik WI, Lange PP, Goossen LJ. Chem. Sci. 2012; 3: 2671
- 6e Larrosa I, Cornella J. Synthesis 2012; 44: 653
- 6f Park K, Lee S. RSC Adv. 2013; 3: 14165
- 6g Shen C, Zhang P, Sun Q, Bai S, Hor TS, Liu X. Chem. Soc. Rev. 2015; 44: 291
- 7 Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
- 8 Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
- 9 Chandrachud PP, Wojtas L, Lopchuk JM. J. Am. Chem. Soc. 2020; 142: 21743
- 10 Bauer I, Knolker HJ. Chem. Rev. 2015; 115: 3170
- 11a Feng P, Sun X, Su Y, Li X, Zhang LH, Shi X, Jiao N. Org. Lett. 2014; 16: 3388
- 11b Li X.-Q, Wang W.-K, Han Y.-X, Zhang C. Adv. Synth. Catal. 2010; 352: 2588
- 11c Li X.-Q, Wang W.-K, Zhang C. Adv. Synth. Catal. 2009; 351: 2342
- 11d Lwowski W, De Mauriac RA, Thompson M, Wilde RE, Chen S.-Y. J. Org. Chem. 1975; 40: 2608
- 11e Salama TA, Elmorsy SS, Khalil A.-GM, Ismail MA. Chem. Lett. 2011; 40: 1149
- 11f Wei R, Ge L, Bao H, Liao S, Li Y. Synthesis 2019; 51: 4645
- 11g Yadav L, Yadav V, Srivastava V. Synlett 2016; 27: 2826
- 12a Toriyama F, Cornella J, Wimmer L, Chen TG, Dixon DD, Creech G, Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
- 12b Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 11906
- 13 Montesinos-Magraner M, Costantini M, Ramirez-Contreras R, Muratore ME, Johansson MJ, Mendoza A. Angew. Chem. Int. Ed. 2019; 58: 5930
- 15 Typical Procedure: A flame-dried reaction tube with a magnetic stirring bar was charged with NHP ester 1a (0.5 mmol, 133 mg), ferric acetate (10 mol%, 9.5 mg) and THF (5.0 mL) under a nitrogen atmosphere. TMSN3 (1.5 mmol, 0.2 mL) was then injected into the tube and the mixture was heated at 70 °C (oil bath) for 24 h. After reaction completion as detected by TLC, the solid was removed by filtration and the filtrate was concentrated. The residue was purified by column chromatography (silica gel, PE/EtOAc = 10:1) to afford the carbamoyl azide 2a (73.7 mg, 91% yield) as a white solid; mp 105–106 °C. 1H NMR (600 MHz, CDCl3): δ = 7.42 (d, J = 8.1 Hz, 2 H), 7.35–7.31 (m, 2 H), 7.12 (t, J = 7.4 Hz, 1 H), 6.83 (br, 1 H). 13C NMR (151 MHz, CDCl3): δ = 154.00, 136.95, 129.31, 124.75, 119.27.