Subscribe to RSS
DOI: 10.1055/a-2108-9720
Iridium-Catalyzed Asymmetric Allylation of Indoles via Kinetic Resolution of 1-Alken-4-yn-3-ols
This work was supported by Aoyama Gakuin University Research Institute grant program for promotion of SDGs-related research and a grant from Aoyama Gakuin Research Institute.
Dedicated to Prof. Hisashi Yamamoto on the occasion of his 80th birthday
Abstract
We report the iridium-catalyzed asymmetric allylation of indoles via kinetic resolution of 1-alken-4-yn-3-ols to form chiral 1-alken-4-yn-3-ols and branched allylated products with high selectivity. 1-Alken-4,6-diyn-3-ol was also found to be suitable for this asymmetric allylation and gave the products in high yield and enantioselectivity. Other nucleophiles such as a malonic ester and a thiol, besides indoles, reacted to give allylated products and 1-alken-4-yn-3-ols with high enantioselectivities.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2108-9720.
- Supporting Information
Publication History
Received: 30 April 2023
Accepted after revision: 12 June 2023
Accepted Manuscript online:
12 June 2023
Article published online:
17 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 New address: T. Sawano, Department of Materials for Energy, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.
- 2a Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K. Chem. Pharm. Bull. 1990; 38: 3480
- 2b Bernart MW, Cardellina JH. II, Balaschak MS, Alexander MR, Shoemaker RH, Boyd MR. J. Nat. Prod. 1996; 59: 748
- 2c Christensen LP, Brandt K. J. Pharm. Biomed. Anal. 2006; 41: 683
- 3a Jeong MK, Pyeongjae L, Dongwook S, Hocheol K, Sun YK. Neuroreport 2003; 14: 1941
- 3b Jin HR, Zhao J, Liao Y, Wang C.-Z, Huang W.-H, Li S.-P, He T.-C, Yuan C.-S, Du W. Cell Death Dis. 2012; 3: 376
- 3c Wyrembek P, Negri R, Kaczor P, Czyżewska M, Appendino G, Mozrzymas JW. J. Nat. Prod. 2012; 75: 610
- 4a Matsunaga H, Katano M, Saita T, Yamamoto H, Mori M. Cancer Chemother. Pharmacol. 1994; 33: 291
- 4b Saita T, Katano M, Matsunaga H, Kouno I, Fujito H, Mori M. Biol. Pharm. Bull. 1995; 18: 933
- 4c Matsunaga H, Saita T, Nagumo F, Mori M, Katano M. Cancer Chemother. Pharmacol. 1995; 35: 291
- 4d Kim JY, Lee K.-W, Kim S.-H, Wee JJ, Kim Y.-S, Lee HJ. Planta Med. 2002; 68: 119
- 5a Moon J, Yu S.-J, Kim H.-S, Sohn J. Biochem. Pharmacol. 2000; 59: 1109
- 5b Kim JY, Yu S.-J, Oh HJ, Lee JY, Kim Y, Sohn J. Apoptosis 2011; 16: 347
- 6a Kwon BM, Ro S.-H, Kim M.-K, Nam J.-Y, Jung H.-J, Lee I.-R, Kim Y.-K, Bok S.-H. Planta Med. 1997; 63: 552
- 6b Zaini RG, Brandt K, Clench MR, Le Maitre CL. Anti-Cancer Agents Med. Chem. 2012; 12: 640
- 7a Yang Y.-Q, Li S.-N, Zhong J.-C, Zhou Y, Zeng H.-Z, Duan H.-J, Bian Q.-H, Wang M. Tetrahedron: Asymmetry 2015; 26: 361
- 7b Mao J, Li S, Zhong J, Wang B, Jin J, Gao Z, Yang H, Bian Q. Tetrahedron: Asymmetry 2016; 27: 69
- 8a Mayer SF, Steinreiber A, Orru RV. A, Faber K. J. Org. Chem. 2002; 67: 9115
- 8b Ratnayake AS, Hemscheidt T. Org. Lett. 2002; 4: 4667
- 8c McLaughlin NP, Butler E, Evans P, Brunton NP, Koidis A, Rai DK. Tetrahedron 2010; 66: 9681
- 9a Yun H, Danishefsky SJ. J. Org. Chem. 2003; 68: 4519
- 9b Tamura S, Ohno T, Hattori Y, Murakami N. Tetrahedron Lett. 2010; 51: 1523
- 10a Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 10b In Topics in Organometallic Chemistry . Kazmaier U. Springer; Heidelberg: 2012
- 10c Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 10d Thoke MB, Kang Q. Synthesis 2019; 51: 2585
- 10e Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
- 11a Takeuchi R, Kashio M. Angew. Chem., Int. Ed. Engl. 1997; 36: 263
- 11b Takeuchi R, Kashio M. J. Am. Chem. Soc. 1998; 120: 8647
- 12a de Vries AH. M, Meetsma A, Feringa BL. Angew. Chem., Int. Ed. Engl. 1996; 35: 2374
- 12b Teichert JF, Feringa BL. Angew. Chem. Int. Ed. 2010; 49: 2486
- 13 Defieber C, Ariger MA, Moriel P, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
- 14a Sawano T, Takeuchi R. Catal. Sci. Technol. 2022; 12: 4100
- 14b Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 14c Qu J, Helmchen G. Acc. Chem. Res. 2017; 50: 2539
- 14d Tosatti P, Nelson A, Marsden SP. Org. Biomol. Chem. 2012; 10: 3147
- 14e Hartwig JF, Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
- 15a Cook GR. Curr. Org. Chem. 2000; 4: 869
- 15b Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
- 15c Robinson DE. J. E, Bull SD. Tetrahedron: Asymmetry 2003; 14: 1407
- 15d Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
- 16a Saxton JE. Nat. Prod. Rep. 1997; 14: 559
- 16b Agarwal S, Cammerer S, Filali S, Frohner W, Knoll J, Krahl MP, Reddy KR, Knolker H.-J. Curr. Org. Chem. 2005; 9: 1601
- 16c Frederich M, Tits M, Angenot L. Trans. R. Soc. Trop. Med. Hyg. 2008; 102: 11
- 16d Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 16e Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
- 17 Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
- 18 Reaction of 1-Alken-4-yn-3-ol 1a with Indole (2a) A mixture of [Ir(cod)Cl]2 (8.4 mg, 0.0126 mmol) and (R)-L (39.1 mg, 0.0770 mmol) in THF (2.0 mL) was stirred at room temperature for 15 min. To the mixture was added 2a (58.7 mg, 0.501 mmol), 1a (157.7 mg, 0.9968 mmol), and Mg(OTf)2 (16.1 mg, 0.0499 mmol), and it was stirred at 50 °C for 4 h. After removal of the solvent on a rotary evaporator, the residue was subjected to column chromatography (silica gel, hexane/EtOAc = 95:5) to give compounds 3aa (118.2 mg, 0.4593 mmol, 92% yield, 99% ee) and 1a (72.0 mg, 0.455 mmol, 46% yield, >99% ee). 3-(5-Phenylpent-1-en-4-yn-3-yl)-1H-indole (3aa) Obtained as a red oil. The ee was measured by HPLC (Chiralcel OJ-H column; 1.0 mL/min; hexane/2-propanol = 80:20; 230 nm): t 1 = 39.8 min (major), t 2 = 49.0 min (minor); [α] d 24 –49 (c 1.01, CHCl3) for 99% ee. 1H NMR (500 MHz, CDCl3): δ = 7.98 (br, 1 H), 7.76 (d, J = 8.0 Hz, 1 H), 7.49–7.42 (m, 2 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.32–7.25 (m, 3 H), 7.23–7.17 (m, 2 H), 7.16–7.10 (m, 1 H), 6.13 (ddd, J = 16.6, 9.8, 6.0 Hz, 1 H), 5.57–5.50 (m, 1 H), 5.25–5.18 (m, 1 H), 4.86 (d, J = 5.7 Hz, 1 H). 13C{1H} NMR (126 MHz, CDCl3): δ = 137.2, 136.7, 131.7, 128.2, 127.8, 126.0, 123.6, 122.2, 121.9, 119.54, 119.46, 115.1, 115.0, 111.3, 89.0, 83.7, 33.5. HRMS (FAB): m/z [M]+ calcd for C19H15N: 257.1199; found: 257.1197. (S)-5-Phenylpent-1-en-4-yn-3-ol (1a) Obtained as a colorless oil. The ee was measured by HPLC (Chiralcel OJ-H column; 1.0 mL/min; hexane/2-propanol = 90:10; 230 nm): t 1 = 14.7 min (minor), t 2 = 17.7 min (major); [α] d 24 +46 (c 1.00, CHCl3) for >99% ee. 1H NMR (500 MHz, CDCl3): δ = 7.49–7.41 (m, 2 H), 7.36–7.27 (m, 3 H), 6.07 (ddd, J = 17.2, 10.0, 5.3 Hz, 1 H), 5.59–5.51 (m, 1 H), 5.31–5.25 (m, 1 H), 5.11 (t, J = 6.0 Hz, 1 H), 2.12–1.98 (m, 1 H). 13C{1H} NMR (126 MHz, CDCl3): δ = 136.9, 131.7, 128.6, 128.3, 122.3, 116.6, 87.6, 86.3, 63.7. HRMS (FAB): m/z [M]+ calcd for C11H10O: 158.0726; found: 158.0722.
- 19 Kumaraswamy G, Sadaiah K. Tetrahedron 2012; 68: 262