RSS-Feed abonnieren
DOI: 10.1055/a-2110-5359
Remote Back Strain: A Strategy for Modulating the Reactivity of Triarylboranes
This project was supported by the Environment Research and Technology Development Fund (JPMEERF20211R01 to Y.H.) of the Environmental Restoration and Conservation Agency of the Ministry of the Environment of Japan, and Grants-in-Aid for Transformative Research Area (A) Digitalization-driven Transformative Organic Synthesis (JSPS KAKENHI Grant 22H05363 to Y.H.). Y.H. acknowledges financial supports from the Yazaki Memorial Foundation for Science and Technology, the Kansai Research Foundation for Technology Promotion, and the Takeharakenzai Alpsclean Co., Ltd. M.S. gratefully acknowledges a JST SPRING grant (JPMJSP2138).
Abstract
A strategy for modulating the Lewis acidity of triarylboranes is proposed based on the concept of remote back strain. Steric repulsion and noncovalent interactions, both generated between the aryl meta-substituents of triarylboranes, are found to be critical for determining the strength of the remote back strain. Applying this concept, we synthesized B[2,6-F2-3,5-(TMS)2-C6H]3 and the liquid B[2,6-F2-3,5-(allyl)2-C6H]3 and we demonstrated their superior catalytic activity for the hydrogenation of quinoline relative to B(C6F5)3 or B(2,6-F2C6H3)3. Moreover, we established the first example of the catalytic hydrogenation of quinoline by using B[2,6-F2-3,5-(allyl)2-C6H]3 in the presence of a gaseous 1:1:1 molar mixture of H2, CO, and CO2.
Key words
triarylboranes - Lewis acids - frustrated Lewis pairs - hydrogenation - boron catalysis - hydrogen separationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2110-5359.
- Supporting Information
Publikationsverlauf
Eingereicht: 30. Mai 2023
Angenommen nach Revision: 14. Juni 2023
Accepted Manuscript online:
14. Juni 2023
Artikel online veröffentlicht:
14. September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Carden JL, Dasgupta A, Melen RL. Chem. Soc. Rev. 2020; 49: 1706
- 1b Berger SM, Ferger M, Marder TB. Chem. Eur. J. 2021; 27: 7043
- 1c Berionni G. Chem. Synth. 2021; 1: 10
- 1d He J, Rauch F, Finze M, Marder TB. Chem. Sci. 2021; 12: 128
- 1e Lawson JR, Melen RL. Inorg. Chem. 2017; 56: 8627
- 1f Nori V, Pesciaioli F, Sinibaldi A, Giorgianni G, Carlone A. Catalysts 2022; 12: 5
- 2a Jupp AR, Stephan DW. Trends Chem. 2019; 1: 35
- 2b Hoshimoto Y, Ogoshi S. ACS Catal. 2019; 9: 5439
- 2c Scott DJ, Fuchter MJ, Ashley AE. Chem Soc. Rev. 2017; 46: 5689
- 2d Fasano V, Ingleson MJ. Synthesis 2018; 50: 1783
- 2e Paradies J. Acc. Chem. Res. 2023; 56: 821
- 2f Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
- 3a Erdmann P, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202114550
- 3b Greb L. Chem. Eur. J. 2018; 24: 17881
- 3c Rodrigues Silva D, de Azevedo Santos L, Freitas MP, Fonseca Guerra C, Hamlin TA. Chem. Asian J. 2020; 15: 4043
- 3d Muller P. Pure Appl. Chem. 1994; 66: 1077
- 4 Sivaev IB, Bregadze VI. Coord. Chem. Rev. 2014; 270–271: 75
- 5a Zhang Y. Inorg. Chem. 1982; 21: 3889
- 5b Brown ID, Skowron A. J. Am. Chem. Soc. 1990; 112: 3401
- 5c Chattaraj PK, Sarkar U, Roy DR. Chem. Rev. 2006; 106: 2065
- 5d Jupp AR, Johnstone TC, Stephan DW. Dalton Trans. 2018; 47: 7029
- 6 Chase PA, Henderson LD, Piers WE, Parvez M, Clegg W, Elsegood MR. J. Organometallics 2006; 25: 349
- 7a Morgan MM, Marwitz AJ. V, Piers WE, Parvez M. Organometallics 2013; 32: 317
- 7b Ashley AE, Herrington TJ, Wildgoose GG, Zaher H, Thompson AL, Rees NH, Krämer T, O’Hare D. J. Am. Chem. Soc. 2011; 133: 14727
- 7c Erős G, Mehdi H, Pápai I, Rokob TA, Király P, Tárkányi G, Soós T. Angew. Chem. Int. Ed. 2010; 49: 6559
- 7d Erős G, Nagy K, Mehdi H, Pápai I, Nagy P, Király P, Tárkányi G, Soós T. Chem. Eur. J. 2012; 18: 574
- 7e Gyömöre Á, Bakos M, Földes T, Pápai I, Domján A, Soós T. ACS Catal. 2015; 5: 5366
- 7f Dorkó É, Kótai B, Földes T, Gyömöre Á, Pápai I, Soós T. J. Organomet. Chem. 2017; 847: 258
- 7g Hoshimoto Y, Kinoshita T, Hazra S, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2018; 140: 7292
- 8 Hashimoto T, Asada T, Ogoshi S, Hoshimoto Y. Sci. Adv. 2022; 8: eade0189
- 9 Timoshkin AY, Davydova EI, Sevastianova TN. Suvorov A. V, Schaefer HF. Int. J. Quantum Chem. 2002; 88: 436
- 10a Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L. Eur. J. Inorg. Chem. 2009; 1759
- 10b Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat. Chem. 2019; 11: 872
- 10c Zapf L, Riethmann M, Föhrenbacher SA, Finze M, Radius U. Chem. Sci. 2023; 14: 2275
- 11a Adams R, Yuan HC. Chem. Rev. 1933; 12: 261
- 11b Patton A, Dirks JW, Gust D. J. Org. Chem. 1979; 44: 4749
- 11c Gorecka J, Heiss C, Scopelliti R, Schlosser M. Org. Lett. 2004; 6: 4591
- 12 Tris[2,6-difluoro-3,5-bis(trimethylsilyl)phenyl]borane (B1) Colorless crystals; yield: 717.8 mg (35%; 4% after recrystallization). 1H NMR (400 MHz, C6D6): δ = 7.78 [t, 4 J H,F = 7.0 Hz, 3 H, Ar-H), 0.26 (s, 54 H, Si(CH 3)3]. 11B NMR (128 MHz, C6D6): not observed. 13C{1H} NMR (101 MHz, C6D6): δ = 172.2 (dd, 1 J C,F = 248.5 Hz, 3 J C,F = 12.1 Hz), 146.6 (dt, J = 15.2 Hz, J = 3.0 Hz), 121.3 (m), 118.7 (t, J = 28.3 Hz), –1.0. 19F NMR (376 MHz, C6D6): δ = –86.7 (d, 4 J H,F = 7.5 Hz, 6 F).
- 13 Murakami K, Hirano K, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2008; 47: 5833
- 14 CCDC 2265357, 2265358, and 2265359 contains the supplementary crystallographic data for compounds B1 , CH3CN–B2 , and (Et3P=O–B1 ). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15 Tris(3,5-diallyl-2,6-difluorophenyl)borane (B2) Liquid; yield: 265.1 mg (23%). 1H NMR (400 MHz, C6D6): δ = 6.93 (t, 4 J H,F = 8.2 Hz, 3 H, Ar-H), 5.75 (m, 6 H, CH2CH=CH2), 4.94 (m, 12 H, CH2CH=CH 2), 3.13 (d, J = 6.4 Hz, 12 H, CH 2CH=CH2). 11B NMR (128 MHz, C6D6): not observed. 13C{1H} NMR (101 MHz, C6D6): δ = 161.6 (dd, 1 J C, F = 249.5 Hz, 3 J C, F = 11.1 Hz), 136.3, 135.9, 122.7 (m), 116.3, 32.9. Resonances of the Cipso with respect to the boron atom were not observed.19F NMR (376 MHz, C6D6): δ = –110.0 (d, 4 J H, F = 7.5 Hz, 6 F).
- 16 Reineke MH, Sampson MD, Rheingold AL, Kubiak CP. Inorg. Chem. 2015; 54: 3211
- 17 We also calculated the tetrahedral character for each boron center and obtained results identical to the τδ(B) values; for details, see SI: Figures S9–S13.
- 18 Holtrop F, Helling C, Lutz M, van Leest NP, de Bruin B, Slootweg JC. Synlett 2023; 34: 1122
- 19a Geier SJ, Chase PA, Stephan DW. Chem. Commun. 2010; 46: 4884
- 19b Scott DJ, Fuchter MJ, Ashley AE. Angew. Chem. Int. Ed. 2014; 53: 10218
- 19c Zhang Z, Du H. Org. Lett. 2015; 17: 6266
- 19d Han C, Zhang E, Feng X, Wang S, Du H. Tetrahedron Lett. 2018; 59: 1400
- 20 Mahdi T, del Castillo JN, Stephan DW. Organometallics 2013; 32: 1971
- 21 1,2,3,4-Tetrahydroquinoline; Typical Procedure A 30 mL autoclave was charged with Qin (263.2 mg, 2.0 mmol), B2 (59.8 mg, 0.1 mmol; 5 mol%), tetradecane (142.5 mg; internal standard), and toluene (1.3 mL). Once sealed, the autoclave was pressurized with H2, CO, CO2 (20 atm each) and heated 100 °C for 8 h; yield: >99% (GC).
Recently, Greb et al. have proposed that Lewis acidity could be classified as global, effective, or intrinsic. These labels refer to the thermodynamic energy change during adduct formation (∆E/ΔG), the spectroscopic changes observed on the Lewis base (e.g., the Gutmann–Beckett method) upon forming an adduct, and the intrinsic properties of the free boranes (e.g., the energy level of the empty p orbitals and its electron affinity), respectively, for details, see:
For selected examples, see:
For examples that include trialkylsilyl groups, see:
For selected examples, see: