Subscribe to RSS
DOI: 10.1055/a-2127-1086
Enamine N-Oxides: Design, Synthesis, and Function in Bioorthogonal Reactions
This research was supported by the National Institute of Environmental Health Sciences (NIH NIEHS; 1DP2ES030448) and the Claudia Adams Barr Program for Innovative Cancer Research.
Abstract
Enamine N-oxides act as a chemical linchpin bridging two bioorthogonal associative and dissociative reactions. This article describes the design of enamine N-oxides, their synthesis through the retro-Cope elimination reaction, the use of solvent, hyperconjugation, strain, and rehybridization effects to achieve bioorthogonal reactivity, and their rapid reductive cleavage with diboron reagents. The coordinated assembly and disassembly of the enamine N-oxide motif constitutes a powerful chemical operation that enables the attachment and detachment of small molecules from biomacromolecules in a biological setting.
1 Introduction
2 Background
3 General Access to Linear Enamine N-Oxides
4 Strain-Promoted Hydroamination Reaction
5 Electronically Activated Alkynes
6 Chemically Revertible Reactions
7 Conclusion
Key words
bioorthogonal chemistry - enamine N-oxides - ligation reaction - cleavage reaction - strain-promoted reaction - rehybridization effect - diboronPublication History
Received: 25 May 2023
Accepted after revision: 11 July 2023
Accepted Manuscript online:
11 July 2023
Article published online:
04 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Saxon E, Bertozzi CR. Science 2000; 287: 2007
- 2 Agard NJ, Prescher JA, Bertozzi CR. J. Am. Chem. Soc. 2004; 126: 15046
- 3 Patterson DM, Nazarova LA, Prescher JA. ACS Chem. Biol. 2014; 9: 592
- 4 Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
- 5 van Brakel R, Vulders RC. M, Bokdam RJ, Grüll H, Robillard MS. Bioconjugate Chem. 2008; 19: 714
- 6 Li J, Chen PR. Nat. Chem. Biol. 2016; 12: 129
- 7a Tu J, Xu M, Parvez S, Peterson RT, Franzini RM. J. Am. Chem. Soc. 2018; 140: 8410
- 7b Xu M, Tu J, Franzini RM. Chem. Commun. 2017; 53: 6271
- 8 Wang J, Wang X, Fan X, Chen PR. ACS Cent. Sci. 2021; 7: 929
- 9 Lin YA, Boutureira O, Lercher L, Bhushan B, Paton RS, Davis BG. J. Am. Chem. Soc. 2013; 135: 12156
- 10 Chen T.-H, Garnir K, Chen C.-Y, Jian C.-B, Gao H.-D, Cheng B, Tseng M.-C, Moucheron C, Kirsch-De Mesmaeker A, Lee H.-M. J. Am. Chem. Soc. 2022; 144: 18117
- 11a Dirksen A, Dirksen S, Hackeng TM, Dawson PE. J. Am. Chem. Soc. 2006; 128: 15602
- 11b Rashidian M, Song JM, Pricer RE, Distefano MD. J. Am. Chem. Soc. 2012; 134: 8455
- 11c Bird RE, Lemmel SA, Yu X, Zhou QA. Bioconjugate Chem. 2021; 32: 2457
- 12 Krouwer JS, Richmond JP. J. Org. Chem. 1978; 43: 2464
- 13 O’Neil IA, Wynn D, Lai JY. Q. Tetrahedron Lett. 2000; 41: 271
- 14 Bernier D, Blake AJ, Woodward S. J. Org. Chem. 2008; 73: 4229
- 15 Winterfeldt E, Krohn W. Chem. Ber. 1969; 102: 2336
- 16 Ciganek E, Read JM. Jr, Calabrese JC. J. Org. Chem. 1995; 60: 5795
- 17 O’Neil IA, McConville M, Zhou K, Brooke C, Robertson CM, Berry NG. Chem. Commun. 2014; 50: 7336
- 18 Hwu JR, Patel HV, Lin RJ, Gray MO. J. Org. Chem. 1994; 59: 1577
- 19 Beauchemin AM. Org. Biomol. Chem. 2013; 11: 7039
- 20 Castagnoli N, Cymerman CJ, Melikian AP, Roy SK. Tetrahedron 1970; 26: 4319
- 21 Beauchemin AM, Moran J, Lebrun M.-E, Séguin C, Dimitrijevic E, Zhang L, Gorelsky SI. Angew. Chem. Int. Ed. 2008; 47: 1410
- 22 Moran J, Gorelsky SI, Dimitrijevic E, Lebrun M.-E, Bédard A.-C, Séguin C, Beauchemin AM. J. Am. Chem. Soc. 2008; 130: 17893
- 23 Kang D, Cheung ST, Wong-Rolle A, Kim J. ACS Cent. Sci. 2021; 7: 631
- 24 Cooper NJ, Knight DW. Tetrahedron 2004; 60: 243
- 25 Dion I, Vincent-Rocan J.-F, Zhang L, Cebrowski PH, Lebrun M.-E, Pfeiffer JY, Bédard A.-C, Beauchemin AM. J. Org. Chem. 2013; 78: 12735
- 26 Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
- 27 Devaraj NK, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
- 28 Kang D, Kim J. J. Am. Chem. Soc. 2021; 143: 5616
- 29 Gordon CG, Mackey JL, Jewett JC, Sletten EM, Houk KN, Bertozzi CR. J. Am. Chem. Soc. 2012; 134: 9199
- 30 Patterson DM, Prescher JA. Curr. Opin. Chem. Biol. 2015; 28: 141
- 31 Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA. J. Am. Chem. Soc. 2012; 134: 18638
- 32 Chen W, Wang D, Dai C, Hamelberg D, Wang B. Chem. Commun. 2012; 48: 1736
- 33 Dos Santos J.-P, Iobbi-Nivol C, Couillault C, Giordano G, Méjean V. J. Mol. Biol. 1998; 284: 421
- 34 Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Science 1982; 217: 1214
- 35 Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A. Proc. Natl. Acad. Sci. USA 2014; 111: 4461
- 36a Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH. W, Bushman FD, Lusis AJ, Hazen SL. Nat. Med. 2013; 19: 576
- 36b Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y.-M, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH. W, DiDonato JA, Lusis AJ, Hazen SL. Nature 2011; 472: 57
- 37 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 38 Kang D, Cheung ST, Kim J. Angew. Chem. Int. Ed. 2021; 60: 16947
- 39 Kang D, Wahl C, Kim J. Org. Biomol. Chem. 2022; 20: 9217
- 40 Bent HA. Chem. Rev. 1961; 61: 275
- 41a Alabugin IV, Bresch S, dos Passos Gomes G. J. Phys. Org. Chem. 2015; 28: 147
- 41b Alabugin IV, Manoharan M. J. Comput. Chem. 2007; 28: 373
- 42 Hanamoto T, Koga Y, Kawanami T, Furuno H, Inanaga J. Angew. Chem. Int. Ed. 2004; 43: 3582
- 43 Vatsadze SZ, Loginova YD, dos Passos Gomes G, Alabugin IV. Chem. Eur. J. 2017; 23: 3225
- 44 Kang D, Lee S, Kim J. Chem 2022; 8: 2260
- 45 Köster R, Morita Y. Justus Liebigs Ann. Chem. 1967; 704: 70
- 46 Carter CA. G, John KD, Mann G, Martin RL, Cameron TM, Baker RT, Bishop KL, Broene RD, Westcott SA. Bifunctional Lewis Acid Reactivity of Diol-Derived Diboron Reagents . In Group 13 Chemistry, Vol. 822. American Chemical Society; Washington DC: 2002: 70
- 47 Kokatla HP, Thomson PF, Bae S, Doddi VR, Lakshman MK. J. Org. Chem. 2011; 76: 7842
- 48 Kim J, Bertozzi CR. Angew. Chem. Int. Ed. 2015; 54: 15777
- 49 Zhu C, Wang R, Falck JR. Org. Lett. 2012; 14: 3494