Subscribe to RSS
DOI: 10.1055/a-2127-1305
Synthesis of P-Chiral Tertiary Phosphine Oxides by Copper-Catalyzed Dynamic Kinetic Asymmetric C–P Cross-Coupling
The research was supported by the National Natural Science Foundation of China (22271161, 22188101), the Fundamental Research Funds for the Central Universities (735-63223065, 735-63233165), and Nankai University.

Abstract
P-Stereogenic phosphorus compounds are of importance in various areas. Some strategies have been developed for the enantioselective formation of C–P bonds, among which transition-metal-catalyzed asymmetric C–P cross-coupling of secondary phosphine oxides (SPOs)—bench-stable, odorless, and nontoxic—is more appealing. Due to the elusive racemization of SPOs, reactions with them usually proceed in a kinetic resolution fashion, thus being less practical. Highlighted here is a copper-catalyzed, highly enantioselective dynamic kinetic intermolecular C–P coupling of SPOs and aryl iodides. The successful development of this reaction relies on two key factors: the facile racemization of SPOs under the reaction conditions and the high enantioselectivity of the carefully tuned copper catalysts. P-Stereogenic tertiary phosphine oxide (TPO) products were obtained in high yields and with good enantioselectivities and were further converted into structurally diverse P-chiral scaffolds that are highly valuable as ligands and catalysts in asymmetric synthesis.
Key words
P-stereogenic compounds - P-chiral ligand - C–P bond formation - cross-coupling - dynamic kinetic resolution - copper catalysis - asymmetric synthesisPublication History
Received: 28 June 2023
Accepted after revision: 11 July 2023
Accepted Manuscript online:
11 July 2023
Article published online:
05 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 1b Busacca CA, Senanayake CH. In Comprehensive Chirality . Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 167-216
- 1c Dutartre M, Bayardon J, Juge S. Chem. Soc. Rev. 2016; 45: 5771
- 1d Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
- 1e Ni H, Chan WL, Lu Y. Chem. Rev. 2018; 118: 9344
- 2a Pietrusiewicz KM, Zablocka M. Chem. Rev. 1994; 94: 1375
- 2b Grabulosa A, Granell J, Muller G. Coord. Chem. Rev. 2007; 251: 25
- 2c Bagi P, Ujj V, Czugler M, Fogassy E, Keglevich G. Dalton Trans. 2016; 1823
- 3a Du Z.-J, Guan J, Wu G.-J, Xu P, Gao L.-X, Han F.-S. J. Am. Chem. Soc. 2015; 137: 632
- 3b Lin Z.-Q, Wang W.-Z, Yan S.-B, Duan W.-L. Angew. Chem. Int. Ed. 2015; 54: 6265
- 3c Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
- 3d Chen Y.-H, Qin X.-L, Han F.-S. Chem. Commun. 2017; 53: 5826
- 3e Sun Y, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 364
- 3f Jang Y.-S, Woźniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
- 3g Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
- 3h Li Z, Lin Z.-Q, Yan C.-G, Duan W.-L. Organometallics 2019; 38: 3916
- 3i Song S.-Y, Li Y, Ke Z, Xu S. ACS Catal. 2021; 11: 13445
- 3j Zhang C.-W, Hu X.-Q, Dai Y.-H, Yin P, Wang C, Duan W.-L. ACS Catal. 2022; 12: 193
- 3k Formica M, Rogova T, Shi H, Sahara N, Ferko B, Farley AJ. M, Christensen KE, Duarte F, Yamazaki K, Dixon DJ. Nat. Chem. 2023; 15: 714
- 3l Yan SB, Wang R, Li ZG, Li AN, Wang C, Duan WL. Nat. Commun. 2023; 14: 2264
- 4 Harvey JS, Malcolmson SJ, Dunne KS, Meek SJ, Thompson AL, Schrock RR, Hoveyda AH, Gouverneur V. Angew. Chem. Int. Ed. 2009; 48: 762
- 5a Lim KM.-H, Hayashi T. J. Am. Chem. Soc. 2017; 139: 8122
- 5b Zheng Y, Guo L, Zi W. Org. Lett. 2018; 20: 7039
- 5c Wang Z, Hayashi T. Angew. Chem. Int. Ed. 2018; 57: 1702
- 5d Zhang Y, Zhang F, Chen L, Xu J, Liu X, Feng X. ACS Catal. 2019; 9: 4834
- 6 Nishida G, Noguchi K, Hirano M, Tanaka K. Angew. Chem. Int. Ed. 2008; 47: 3410
- 7a Huang Z, Huang X, Li B, Mou C, Yang S, Song B.-A, Chi YR. J. Am. Chem. Soc. 2016; 138: 7524
- 7b Yang G.-H, Li Y, Li X, Cheng J.-P. Chem. Sci. 2019; 10: 4322
- 7c Trost BM, Spohr SM, Rolka AB, Kalnmals CA. J. Am. Chem. Soc. 2019; 141: 14098
- 7d Zhu RY, Chen L, Hu XS, Zhou F, Zhou J. Chem. Sci. 2020; 11: 97
- 8a Huang YH, Li YX, Leung PH, Hayashi T. J. Am. Chem. Soc. 2014; 136: 4865
- 8b Li C, Bian Q.-L, Xu S, Duan W.-L. Org. Chem. Front. 2014; 1: 541
- 8c Li Y.-B, Tian H, Yin L. J. Am. Chem. Soc. 2020; 142: 20098
- 8d Yang Z, Gu X, Han LB, Wang JJ. Chem. Sci. 2020; 11: 7451
- 8e Liu X.-T, Han X.-Y, Wu Y, Sun Y.-Y, Gao L, Huang Z, Zhang Q.-W. J. Am. Chem. Soc. 2021; 143: 11309
- 8f Ji D, Jing J, Wang Y, Qi Z, Wang F, Zhang X, Wang Y, Li X. Chem 2022; 8: 3346
- 8g Zhang Y.-Q, Han X.-Y, Wu Y, Qi P.-J, Zhang Q, Zhang Q.-W. Chem. Sci. 2022; 13: 4095
- 9a Moncarz JR, Laritcheva NF, Glueck DS. J. Am. Chem. Soc. 2002; 124: 13356
- 9b Korff C, Helmchen G. Chem. Commun. 2004; 530
- 9c Scriban C, Glueck DS. J. Am. Chem. Soc. 2006; 128: 2788
- 9d Blank NF, Moncarz JR, Brunker TJ, Scriban C, Anderson BJ, Amir O, Glueck DS, Zakharov LN, Golen JA, Incarvito CD, Rheingold AL. J. Am. Chem. Soc. 2007; 129: 6847
- 9e Brunker TJ, Anderson BJ, Blank NF, Glueck DS, Rheingold AL. Org. Lett. 2007; 9: 1109
- 9f Chan VS, Bergman RG, Toste FD. J. Am. Chem. Soc. 2007; 129: 15122
- 9g Anderson BJ, Guino-o MA, Glueck DS, Golen JA, DiPasquale AG, Liable-Sands LM, Rheingold AL. Org. Lett. 2008; 10: 4425
- 9h Chan VS, Chiu M, Bergman RG, Toste FD. J. Am. Chem. Soc. 2009; 131: 6021
- 9i Anderson BJ, Reynolds SC, Guino-o MA, Xu Z, Glueck DS. ACS Catal. 2016; 6: 8106
- 9j Koshti VS, Gote RP, Chikkali SH. Eur. J. Org. Chem. 2018; 6768
- 9k Zhang S, Xiao J.-Z, Li Y.-B, Shi C.-Y, Yin L. J. Am. Chem. Soc. 2021; 143: 9912
- 10 Beaud R, Phipps RJ, Gaunt MJ. J. Am. Chem. Soc. 2016; 138: 13183
- 11a Zhang Y, He H, Wang Q, Cai Q. Tetrahedron Lett. 2016; 57: 5308
- 11b Dai Q, Li W, Li Z, Zhang J. J. Am. Chem. Soc. 2019; 141: 20556
- 11c Zhang Q, Liu X.-T, Wu Y, Zhang Q.-W. Org. Lett. 2021; 23: 8683
- 11d Wu Z.-H, Cheng A.-Q, Yuan M, Zhao Y.-X, Yang H.-L, Wei L.-H, Wang H.-Y, Wang T, Zhang Z, Duan W.-L. Angew. Chem. Int. Ed. 2021; 60: 27241
- 11e Cai W.-Q, Wei Q, Zhang Q.-W. Org. Lett. 2022; 24: 1258
- 11f Wang C, Hu X, Xu C, Ge Q, Yang Q, Xiong J, Duan WL. Angew. Chem. Int. Ed. 2023; 62: e202300011
- 12a Liu X.-T, Zhang Y.-Q, Han X.-Y, Sun S.-P, Zhang Q.-W. J. Am. Chem. Soc. 2019; 141: 16584
- 12b Li Y, Jin X, Liu P, Zhang H, Yu X, Liu Y, Liu B, Yang W. Angew. Chem. Int. Ed. 2022; 61: e202117093
- 12c Liu B, Liu P, Wang X, Feng F, Wang Z, Yang W. Org. Lett. 2023; 25: 2178
- 13 Kang J, Ding K, Ren S.-M, Su B. Angew. Chem. Int. Ed. 2023; 62: e202301628
- 14a Benaglia M, Rossi S. Org. Biomol. Chem. 2010; 8: 3824
- 14b Zhou Q.-L. In Privileged Chiral Ligands and Catalysts, Vol. 6. Zhou Q.-L. Wiley-VCH; Weinheim: 2011: 1-462
- 15 Beletskaya IP, Najera C, Yus M. Chem. Rev. 2018; 118: 5080
- 16 Gallen A, Riera A, Verdaguer X, Grabulosa A. Catal. Sci. Technol. 2019; 9: 5504