Subscribe to RSS
DOI: 10.1055/a-2153-6687
Visible-Light-Promoted Synthesis of Vinyloxaziridines from Conjugated Carbonyls
This material is based upon work supported by the National Science Foundation CAREER and MRI awards: CHE-1752085 and CHE-1827938.
Abstract
We report the first visible-light-promoted synthesis of vinyloxaziridines from simple conjugated nitrones. We have found that vinyl nitrones formed by the condensation reaction between conjugated carbonyls and hydroxylamines undergo visible-light-promoted energy-transfer isomerization to the respective vinyloxaziridines in very high yields and selectivities. The reaction scope expands to a large array of substitution patterns, and evidence indicates that the proposed energy-transfer pathway is the predominant mechanism for this transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2153-6687.
- Supporting Information
Publication History
Received: 31 May 2023
Accepted after revision: 14 August 2023
Accepted Manuscript online:
14 August 2023
Article published online:
28 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Williamson KS, Michaelis DJ, Yoon TP. Chem. Rev. 2014; 114: 8016
- 1b Wang H.-H, Wang X.-D, Yin G.-F, Zeng Y.-F, Chen J, Wang Z. ACS Catal. 2022; 12: 2330
- 1c Sakakibara Y, Murakami K. ACS Catal. 2022; 12: 1857
- 1d Karmakar A, Yu P.-C, Shajan FJ, Chatare VK, Sabbers WA, Sproviero EM, Andrade RB. Org. Lett. 2022; 24: 6548
- 1e Behnke NE, Kielawa R, Kwon D.-H, Ess DH, Kürti L. Org. Lett. 2018; 20: 8064
- 1f Ghosh A, Mandal S, Chattaraj PK, Banerjee P. Org. Lett. 2016; 18: 4940
- 1g Motiwala HF, Gulgeze B, Aubé J. J. Org. Chem. 2012; 77: 7022
- 1h Williamson KS, Yoon TP. J. Am. Chem. Soc. 2010; 132: 4570
- 1i Williamson KS, Yoon TP. J. Am. Chem. Soc. 2012; 134: 12370
- 2a Vidal J, Damestoy S, Guy L, Hannachi J.-C, Aubry A, Collet A. Chem. Eur. J. 1997; 3: 1691
- 2b Davis FA, Abdul-Malik NF, Awad SB, Harakal ME. Tetrahedron Lett. 1981; 22: 917
- 2c Houk KN, Liu J, DeMello NC, Condroski KR. J. Am. Chem. Soc. 1997; 119: 10147
- 2d Davis FA, Stringer OD, Billmers JM. Tetrahedron Lett. 1983; 24: 1213
- 2e Davis FA, Sheppard AC. Tetrahedron Lett. 1988; 29: 4365
- 2f Davis FA, Jenkins LA, Billmers RL. J. Org. Chem. 1986; 51: 1033
- 2g Arnone A, Pregnolato M, Resnati G, Terreni M. J. Org. Chem. 1997; 62: 6401
- 2h Kummer DA, Li D, Dion A, Myers AG. Chem. Sci. 2011; 2: 1710
- 3a Aubé J. Chem. Soc. Rev. 1997; 26: 269
- 3b Suda K, Sashima M, Izutsu M, Hino F. J. Chem. Soc., Chem. Commun. 1994; 949
- 3c Leung CH, Voutchkova AM, Crabtree RH, Balcells D, Eisenstein O. Green Chem. 2007; 9: 976
- 4a Allen CP, Benkovics T, Turek AK, Yoon TP. J. Am. Chem. Soc. 2009; 131: 12560
- 4b Partridge KM, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 930
- 4c Bnekovics T, Du J, Guzei IA, Yoon TP. J. Org. Chem. 2009; 74: 5545
- 5a Michaelis DJ, Shaffer CJ, Yoon TP. J. Am. Chem. Soc. 2007; 129: 1866
- 5b Michaelis DJ, Ischay MA, Yoon TP. J. Am. Chem. Soc. 2008; 130: 6610
- 5c Michaelis DJ, Williamson KS, Yoon TP. Tetrahedron 2009; 65: 5118
- 6 Emmons WD. J. Am. Chem. Soc. 1957; 79: 5739
- 7a Lattes A, Oliveros E, Riviere M, Belzeck C, Mostowicz D, Abramskj W, Piccini-Leopardi C, Germain G, Van Meerssche M. J. Am. Chem. Soc. 1982; 104: 3929
- 7b Aubé J, Burgett PM, Wang YG. Tetrahedron Lett. 1988; 29: 151
- 8a Toda F, Tanaka K. Chem. Lett. 1987; 2283
- 8b Bigot B, Roux D, Sevin A, Devaquet A. J. Am. Chem. Soc. 1979; 101: 2560
- 9 Splitter JS, Calvin M. J. Am. Chem. Soc. 1979; 101: 7329
- 10a Ogata Y, Sawaki Y. J. Am. Chem. Soc. 1973; 95: 4687
- 10b Lin Y.-M, Miller J. J. Org. Chem. 2001; 66: 8282
- 10c Partridge KM, Anzovino ME, Yoon TP. J. Am. Chem. Soc. 2008; 130: 2920
- 11a Kawade RK, Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 2035
- 11b Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymond S, Guérinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761
- 11c Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964
- 11d Zhang G.-L, Rücker G, Breitmaier E, Nieger M, Mayer R, Steinbeck C. Phytochemistry 1995; 40: 299
- 11e Xie J, Xue Q, Jin H, Li H, Cheng Y, Zhu C. Chem. Sci. 2013; 4: 1281
- 11f Koyama K, Hirasawa Y, Nugroho AE, Hosoya T, Hoe T.-C, Chan K.-L, Morita H. Org. Lett. 2010; 12: 4188
- 11g Hong AY, Vanderwal CD. J. Am. Chem. Soc. 2015; 137: 7306
- 11h Krenske EH, Patel A, Houk KN. J. Am. Chem. Soc. 2013; 135: 17638
- 12a Becker DA, Ley JJ, Echegoyen L, Alvarado R. J. Am. Chem. Soc. 2002; 124: 4678
- 12b Rosselin M, Choteau F, Zéamari K, Nash KM, Das A, Lauricella R, Lojou E, Tuccio B, Villamena FA, Durand G. J. Org. Chem. 2014; 79: 6615
- 13 Zhou X, Huang K, Wang Y, Zhang Z, Liu Y, Hou Q, Yang X, Pui Man Hoi M. Front. Pharmacol. 2023; 14: 1082602
- 14 Saini P, Chattopadhyay A. RSC Adv. 2015; 5: 22148
- 15 Christiansen D, Jørgensen KA, Hazell RG. J. Chem. Soc., Perkin Trans. 1 1990; 2391
- 16 Polášek M, Tureček F. J. Am. Chem. Soc. 2000; 122: 525
- 17a Haun GJ, Paneque AN, Almond D, Austin BE, Moura-Letts G. Org. Lett. 2019; 21: 1388
- 17b Trieu P, Filkin WH, Pinarci A, Tobias EM, Madiu R, Dellosso B, Roldan J, Das P, Austin BE, Moura-Letts G. ChemPhotoChem 2023; 7: e202200277
- 17c Pinarci A, Daniecki N, TenHoeve TM, Dellosso B, Madiu R, Mejia L, Bektas SE, Moura-Letts G. Chem. Commun. 2022; 58: 4909
- 17d Lizza JR, Moura-Letts G. Synthesis 2017; 49: 1231
- 17e Bakanas IJ, Moura-Letts G. Eur. J. Org. Chem. 2016; 5345
- 17f Lizza JR, Patel SV, Yang CF, Moura-Letts G. Eur. J. Org. Chem. 2016; 5160
- 17g Neuhaus WC, Moura-Letts G. Tetrahedron Lett. 2016; 57: 4974
- 17h Quinn DJ, Haun GJ, Moura-Letts G. Tetrahedron Lett. 2016; 57: 3844
- 17i Beebe AW, Dohmeier EF, Moura-Letts G. Chem. Commun. 2015; 51: 13511
- 18a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 18b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 18c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 18d Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
- 18e Pitre SP, McTiernan CD, Scaiano JC. Acc. Chem. Res. 2016; 49: 1320
- 18f Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 18g Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 58: 1586
- 19 Quinn DJ, Tumbelty LN, Moscarello EM, Paneque AN, Zinsky AH, Russ MP, Haun GJ, Cinti NA, Dare RM, Moura-Letts G. Tetrahedron Lett. 2017; 58: 4682
- 20 Rosselin M, Tuccio B, Pério P, Fabre P.-L, Durand G. Electrochim. Acta 2016; 193: 231
- 21 General protocol for synthesis of vinyloxaziridines from vinylnitrones: A 50 mL round-bottomed flask equipped with a magnetic stirrer was charged with benzene (20 mL) and the appropriate vinyl nitrone (1 mmol, 1 equiv). The mixture was exposed to a white LED, and the reaction was monitored by TLC. The resulting mixture was purified by chromatography (silica gel). 2-Benzyl-3-[(E)-2-phenylvinyl]oxaziridine (2d): Prepared from nitrone 1d (0.1 mmol) by the general protocol and purified by automated flash chromatography [silica gel (10 g cartridge), heptanes–EtOAc (20:1 to 1:1, 14 mL/min, 12 min)] as a clear oil; yield: 23 mg (98%); TLC: Rf 0.58 (heptanes–EtOAc, 3:1). IR (thin film) 3104, 3041, 2992, 1654, 1520, 1498, 1464, 1281, 1201 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.47–7.32 (m, 10 H), 7.01 (d, J = 16.0 Hz, 1 H), 5.98 (dd, J = 16.0, 7.1 Hz, 1 H), 4.40 (d, J = 7.1 Hz, 1 H), 4.06 (d, J = 8.0 Hz, 1 H), 3.90 (d, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 138.5, 135.3, 135.2, 128.9, 128.8, 128.7, 128.6, 127.9, 126.9, 124.2, 80.9, 65.5. ESI-MS: m/z (%): (pos.) 238.1 ([M + H]+, 100); (neg) 236.1 ([M – H]–, 100). HRMS (ESI): m/z [M + H]+ calcd for C16H16NO: 238.30945; found: 238.30968. Absolute difference: 0.96 ppm.