Subscribe to RSS
DOI: 10.1055/a-2201-7141
Chemoselective Reduction of Barbiturates by Photochemically Excited Flavin Catalysts
The Fonds der Chemischen Industrie (FCI, PhD Fellowship to A.W. and Liebig Fellowship to G.S.) is gratefully acknowledged. R.F. thanks the Studienstiftung des Deutschen Volkes for a PhD fellowship. G.S. thanks the Deutsche Forschungsgemeinschaft (DFG) for support through the Emmy Noether Programme (STO 1175/3-1) and the TRR 325 (444632635, Project B7).
Abstract
Photocatalytic reductive cyclizations are powerful methods for obtaining structurally complex molecules. Achieving noninherent reactivity in substrates with more than one potential site of reduction is a difficult challenge. We disclose the use of flavin catalysis for the chemoselective reductive cyclization of barbiturates with additional reactive functional groups. Our method provides orthogonal selectivity in comparison to the well-established reductant samarium(II) iodide, which preferentially reduces substrate ketone groups. Flavin catalysis first leads to barbiturate reduction and allows a complete change of chemoselectivity in barbiturates with appended ketones. Additionally, flavin photocatalysis enables the reductive cyclization of substrates with appended oxime ethers in >99% yield, which is not possible with SmI2.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2201-7141.
- Supporting Information
Publication History
Received: 19 September 2023
Accepted after revision: 30 October 2023
Accepted Manuscript online:
30 October 2023
Article published online:
08 December 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Chem. Soc. Rev. 2021; 50: 5349
- 2 Streuff J. Synthesis 2013; 45: 281
- 3a Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
- 3b Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
- 3c Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 3d Heravi MM, Nazari A. RSC Adv. 2022; 12: 9944
- 4 Mechanistic switching was also observed when coordinating additives were used: Szostak M, Spain M, Sautier B, Procter DJ. Org. Lett. 2014; 16: 5694
- 5 Hutton TK, Muir KW, Procter DJ. Org. Lett. 2003; 5: 4811
- 7a Rong J, Seeberger PH, Gilmore K. Org. Lett. 2018; 20: 4081
- 7b Bergamaschi E, Lunic D, McLean LA, Hohenadel M, Chen Y.-K, Teskey CJ. Angew. Chem. Int. Ed. 2022; 61: e202114482
- 7c Du J, Espelt LR, Guzei IA, Yoon TP. Chem. Sci. 2011; 2: 2115
- 8a Huang H.-M, Procter DJ. J. Am. Chem. Soc. 2016; 138: 7770
- 8b Huang H.-M, Procter DJ. J. Am. Chem. Soc. 2017; 139: 1661
- 9 Szostak M, Sautier B, Spain M, Behlendorf M, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 12559
- 10a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 10b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 11a Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
- 11b Fava E, Nakajima M, Nguyen AL. P, Rueping M. J. Org. Chem. 2016; 81: 6959
- 11c Qi L, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 13312
- 11d Venditto NJ, Liang YS, El Mokadem RK, Nicewicz DA. J. Am. Chem. Soc. 2022; 144: 11888
- 12 For reductive photocatalysis with flavins, see: Martinez-Haya R, Miranda MA, Marin ML. Eur. J. Org. Chem. 2017; 2164
- 13a Graml A, Neveselý T, Jan Kutta R, Cibulka R, König B. Nat. Commun. 2020; 11: 3174
- 13b Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Chem. Eur. J. 2022; 28: e202200768
- 14 Foja R, Walter A, Jandl C, Thyrhaug E, Hauer J, Storch G. J. Am. Chem. Soc. 2022; 144: 4721
- 15a Sancar A. Biochemistry 1994; 33: 2
- 15b Tan C, Liu Z, Li J, Guo X, Wang L, Sancar A, Zhong D. Nat. Commun. 2015; 6: 7302
- 15c Zhong D. Annu. Rev. Phys. Chem. 2015; 66: 691
- 15d Brettel K, Müller P, Yamamoto J. ACS Catal. 2022; 12: 3041
- 16 Sandoval BA, Clayman PD, Oblinsky DG, Oh S, Nakano Y, Bird M, Scholes GD, Hyster TK. J. Am. Chem. Soc. 2021; 143: 1735
- 17a Page CG, Cooper SJ, DeHovitz JS, Oblinsky DG, Biegasiewicz KF, Antropow AH, Armbrust KW, Ellis JM, Hamann LG, Horn EJ, Oberg KM, Scholes GD, Hyster TK. J. Am. Chem. Soc. 2021; 143: 97
- 17b Laguerre N, Riehl PS, Oblinsky DG, Emmanuel MA, Black MJ, Scholes GD, Hyster TK. ACS Catal. 2022; 12: 9801
- 18 Page CG, Cao J, Oblinsky DG, MacMillan SN, Dahagam S, Lloyd RM, Charnock SJ, Scholes GD, Hyster TK. J. Am. Chem. Soc. 2023; 145: 11866
- 19a Velikogne S, Breukelaar WB, Hamm F, Glabonjat RA, Kroutil W. ACS Catal. 2020; 10: 13377
- 19b Fu H, Lam H, Emmanuel MA, Kim JH, Sandoval BA, Hyster TK. J. Am. Chem. Soc. 2021; 143: 9622
- 19c Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Chem. Eur. J. 2022; 28: e202103949
- 20a Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
- 20b Rehpenn A, Walter A, Storch G. Synthesis 2021; 53: 2583
- 21 Kise N, Tuji T, Sakurai T. Tetrahedron Lett. 2016; 57: 1790
- 22 Analytical Data for Compound 8 White solid (25.6 mg, 94 μmol, 94% (quant. NMR yield)). TLC: Rf = 0.37 (n-pentane/EtOAc, 50/50) [KMnO4]. 1H NMR (400 MHz, acetone-d 6, 298 K): δ = 5.35 (s, 1 H, O-H3), 5.16 (s, 1 H, O-H9), 3.08 (s, 3 H, H5), 3.00 (s, 3 H, H2), 2.47–2.29 (m, 1 H, H11a), 1.88–1.77 (m, 1 H, H10a), 1.74–1.67 (m, 2 H, H6), 1.66–1.55 (m, 2 H, H10b,11b), 1.27–1.19 (m, 1 H, H7a), 1.07 (s, 4 H, H7b,12), 0.82 (t, 3 J H–H = 7.3 Hz, 3 H, H8) ppm. 13C{1H} NMR (101 MHz, acetone-d 6, 298 K): δ = 173.9 (C6), 152.7 (C1), 91.6 (C3), 82.7 (C9), 55.1 (C4), 38.4 (C6), 37.1 (C10), 30.1 (C11), 28.8 (C2), 28.1 (C5), 24.9 (C12), 18.4 (C7), 14.7 (C8) ppm. HRMS (ESI+): m/z calcd for [M + H]+ = [C13H23N2O4]+: 271.1652; found: 271.1635. IR: (ATR): ν = 3400 (br OH), 2960, 2874, 2034, 1854, 1732, 1703, 1648 (C=O), 1587, 1549, 1513, 1450, 1415, 1377, 1333, 1309, 1246, 1129, 1080, 1062, 1028, 1013, 972, 942, 882, 861, 836, 795, 755, 743, 721, 698, 656 cm–1.
- 23a Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
- 23b de Pedro Beato E, Mazzarella D, Balletti M, Melchiorre P. Chem. Sci. 2020; 11: 6312
- 24a Epple R, Carell T. Angew. Chem. Int. Ed. 1998; 37: 938
- 24b Cichon MK, Arnold S, Carell TA. Angew. Chem. Int. Ed. 2002; 41: 767
- 25a Ghisla S, Massey V. Eur. J. Biochem. 1989; 181: 1
- 25b Srivastava V, Singh PK, Srivastava A, Singh PP. RSC Adv. 2021; 11: 14251
- 26 Hitomi K, Nakamura H, Kim S.-T, Mizukoshi T, Ishikawa T, Iwai S, Todo T. J. Biol. Chem. 2001; 276: 10103
- 27 Representative Procedure Ketone 6 (14 mg, 50 μmol, 1.00 equiv.), flavin 9 (1.4 mg, 2.5 μmol, 5 mol%), and imidazole (27 mg, 400 μmol, 8.0 equiv.) were combined in a crimp cap vial and sealed. The reaction vessel was evacuated and backfilled with argon thrice. Subsequently, N,N-dimethylformamide (anhydrous, 250 μL, 0.2 M) and γ-terpinene (16 μL, 100 μmol, 2.00 equiv.) were added, and the vial was irradiated at λmax = 365 nm and a controlled reaction temperature of 15 °C for 16 h. The vial was then opened, the solution was transferred to a flask (rinsed with acetone thrice), and all volatiles were removed in vacuo. 1,3,5-Benzene tricarboxylic acid trimethyl ester (10 μmol) was added as an internal standard and the NMR spectrum was recorded. The crude compound was purified by column chromatography to afford product 7.
- 28 Analytical Data for Compound 7 White solid (11.1 mg, 40 μmol, 79% (96% NMR-yield)); TLC: Rf = 0.23 (n-pentane/EtOAc, 60/40) [KMnO4]. The compound was isolated as a single diastereomer. However, compound 7 was observed to contain two isomers which are assigned to an open chain (major) ‘Ha’ and lactol (minor) ‘Hb’ form. 1H NMR (400 MHz, CD2Cl2, 298 K): δ = 4.69 (br s, 1 H, C3-OH), 3.16 (s, 3 H, H6a), 3.14 (s, 3 H, H6b), 2.97 (s, 3 H, H2b), 2.88 (s, 3 H, H2a), 2.51–2.40 (m, 3 H, H8,14-1), 2.37–2.26 (m, 1 H, H11), 2.18–2.10 (m, 1 H, H7-1), 2.08 (s, 3 H, H10a), 2.05–1.93 (m, 1 H, H13-1), 1.83–1.75 (m, 1 H, H7-2), 1.73–1.63 (m, 1 H, H14-2), 1.42 (s, 3 H, H10b), 1.18–1.02 (m, 1 H, H13-2), 0.69 (d, 3 J H–H = 7.5 Hz, 3 H, H12a), 0.63 (d, 3 J H–H = 7.5 Hz, 3 H, H12b) ppm. 13C{1H} NMR (101 MHz, CD2Cl2, 298 K): δ = 210.9 (C9a), 175.1 (C5b), 172.9 (C5a), 152.3 (C1), 95.6 (C9b), 94.2 (C3b), 92.8 (C3a), 55.8 (C4a), 47.7 (C4b), 45.4 (C11b), 44.6 (C11a), 38.9 (C8a), 33.5 (C14a), 30.5 (C13b), 30.2 (C14b), 30.1 (C2b), 29.8 (C10b), 29.7 (C10a), 28.8 (C13a), 28.6 (C2a), 28.1 (C6b), 27.8 (C7b), 27.8 (C6a), 27.1 (C8b), 26.2 (C7a), 17.2 (C12a), 14.5 (C12b) ppm. HRMS (ESI+): m/z calcd for [M + H]+ = [C14H23N2O4]+: 283.1652; found: 283.1658. IR (ATR): 3346 (OH), 2960, 2877, 1733, 1684, 1649 (C=O), 1549, 1449, 1414, 1382, 1340, 1308, 1259, 1172, 1153, 1122, 1094, 1061, 1002, 961, 929, 885, 843, 755, 735, 722, 661.9 cm–1.
- 29a Singh AK, Bakshi RK, Corey EJ. J. Am. Chem. Soc. 1987; 109: 6187
- 29b Hasegawa E, Curran DP. J. Org. Chem. 1993; 58: 5008
- 30 For the related SmI2-mediated reduction of γ-indolylketones, see: Beemelmanns C, Nitsch D, Bentz C, Reissig H.-U. Chem. Eur. J. 2019; 25: 8780
- 31a Shi S, Szostak M. Org. Lett. 2015; 17: 5144
- 31b Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 11949
- 32 Computational study of a SmI2-mediated reduction with chelate complex intermediates: Achazi AJ, Andrae D, Reissig H.-U, Paulus B. J. Comput. Chem. 2017; 38: 2693
- 33a Chiara JL, Marco-Contelles J, Khiar N, Gallego P, Destabel C, Bernabe M. J. Org. Chem. 1995; 60: 6010
- 33b Marco-Contelles J, Gallego P, Rodríguez-Fernández M, Khiar N, Destabel C, Bernabé M, Martínez-Grau A, Chiara JL. J. Org. Chem. 1997; 62: 7397
- 34 On the reduced reactivity of SmI2 towards oxime ethers, see: Ning L, Li H, Lai Z, Szostak M, Chen X, Dong Y, Jin S, An J. J. Org. Chem. 2021; 86: 2907
Examples of mechanistic switches in photochemical reduction:
Reviews on photoredox catalysis:
Selected examples:
For reductive photocatalysis with deazaflavins, see:
Reviews on flavin catalysis in organic chemistry:
Examples of γ-terpinene as a reductant in photochemistry:
For the related SmI2-mediated reduction of α,β-unsaturated esters in cyclic imide substrate side chain, see: