Synlett 2024; 35(09): 952-956
DOI: 10.1055/a-2201-7141
cluster
Chemical Synthesis and Catalysis in Germany

Chemoselective Reduction of Barbiturates by Photochemically Excited Flavin Catalysts

Richard Foja
,
Alexandra Walter
,
Golo Storch
The Fonds der Chemischen Industrie (FCI, PhD Fellowship to A.W. and Liebig Fellowship to G.S.) is gratefully acknowledged. R.F. thanks the Studienstiftung des Deutschen Volkes for a PhD fellowship. G.S. thanks the Deutsche Forschungsgemeinschaft (DFG) for support through the Emmy Noether Programme (STO 1175/3-1) and the TRR 325 (444632635, Project B7).


Abstract

Photocatalytic reductive cyclizations are powerful methods for obtaining structurally complex molecules. Achieving noninherent reactivity in substrates with more than one potential site of reduction is a difficult challenge. We disclose the use of flavin catalysis for the chemoselective reductive cyclization of barbiturates with additional reactive functional groups. Our method provides orthogonal selectivity in comparison to the well-established reductant samarium(II) iodide, which preferentially reduces substrate ketone groups. Flavin catalysis first leads to barbiturate reduction and allows a complete change of chemoselectivity in barbiturates with appended ketones. Additionally, flavin photocatalysis enables the reductive cyclization of substrates with appended oxime ethers in >99% yield, which is not possible with SmI2.

Supporting Information

Primary Data



Publikationsverlauf

Eingereicht: 19. September 2023

Angenommen nach Revision: 30. Oktober 2023

Accepted Manuscript online:
30. Oktober 2023

Artikel online veröffentlicht:
08. Dezember 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Chem. Soc. Rev. 2021; 50: 5349
  • 2 Streuff J. Synthesis 2013; 45: 281
  • 4 Mechanistic switching was also observed when coordinating additives were used: Szostak M, Spain M, Sautier B, Procter DJ. Org. Lett. 2014; 16: 5694
  • 5 Hutton TK, Muir KW, Procter DJ. Org. Lett. 2003; 5: 4811
  • 9 Szostak M, Sautier B, Spain M, Behlendorf M, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 12559
  • 12 For reductive photocatalysis with flavins, see: Martinez-Haya R, Miranda MA, Marin ML. Eur. J. Org. Chem. 2017; 2164
  • 14 Foja R, Walter A, Jandl C, Thyrhaug E, Hauer J, Storch G. J. Am. Chem. Soc. 2022; 144: 4721
  • 16 Sandoval BA, Clayman PD, Oblinsky DG, Oh S, Nakano Y, Bird M, Scholes GD, Hyster TK. J. Am. Chem. Soc. 2021; 143: 1735
  • 18 Page CG, Cao J, Oblinsky DG, MacMillan SN, Dahagam S, Lloyd RM, Charnock SJ, Scholes GD, Hyster TK. J. Am. Chem. Soc. 2023; 145: 11866
  • 21 Kise N, Tuji T, Sakurai T. Tetrahedron Lett. 2016; 57: 1790
  • 22 Analytical Data for Compound 8 White solid (25.6 mg, 94 μmol, 94% (quant. NMR yield)). TLC: Rf = 0.37 (n-pentane/EtOAc, 50/50) [KMnO4]. 1H NMR (400 MHz, acetone-d 6, 298 K): δ = 5.35 (s, 1 H, O-H3), 5.16 (s, 1 H, O-H9), 3.08 (s, 3 H, H5), 3.00 (s, 3 H, H2), 2.47–2.29 (m, 1 H, H11a), 1.88–1.77 (m, 1 H, H10a), 1.74–1.67 (m, 2 H, H6), 1.66–1.55 (m, 2 H, H10b,11b), 1.27–1.19 (m, 1 H, H7a), 1.07 (s, 4 H, H7b,12), 0.82 (t, 3 J H–H = 7.3 Hz, 3 H, H8) ppm. 13C{1H} NMR (101 MHz, acetone-d 6, 298 K): δ = 173.9 (C6), 152.7 (C1), 91.6 (C3), 82.7 (C9), 55.1 (C4), 38.4 (C6), 37.1 (C10), 30.1 (C11), 28.8 (C2), 28.1 (C5), 24.9 (C12), 18.4 (C7), 14.7 (C8) ppm. HRMS (ESI+): m/z calcd for [M + H]+ = [C13H23N2O4]+: 271.1652; found: 271.1635. IR: (ATR): ν = 3400 (br OH), 2960, 2874, 2034, 1854, 1732, 1703, 1648 (C=O), 1587, 1549, 1513, 1450, 1415, 1377, 1333, 1309, 1246, 1129, 1080, 1062, 1028, 1013, 972, 942, 882, 861, 836, 795, 755, 743, 721, 698, 656 cm–1.
  • 26 Hitomi K, Nakamura H, Kim S.-T, Mizukoshi T, Ishikawa T, Iwai S, Todo T. J. Biol. Chem. 2001; 276: 10103
  • 27 Representative Procedure Ketone 6 (14 mg, 50 μmol, 1.00 equiv.), flavin 9 (1.4 mg, 2.5 μmol, 5 mol%), and imidazole (27 mg, 400 μmol, 8.0 equiv.) were combined in a crimp cap vial and sealed. The reaction vessel was evacuated and backfilled with argon thrice. Subsequently, N,N-dimethylformamide (anhydrous, 250 μL, 0.2 M) and γ-terpinene (16 μL, 100 μmol, 2.00 equiv.) were added, and the vial was irradiated at λmax = 365 nm and a controlled reaction temperature of 15 °C for 16 h. The vial was then opened, the solution was transferred to a flask (rinsed with acetone thrice), and all volatiles were removed in vacuo. 1,3,5-Benzene tricarboxylic acid trimethyl ester (10 μmol) was added as an internal standard and the NMR spectrum was recorded. The crude compound was purified by column chromatography to afford product 7.
  • 28 Analytical Data for Compound 7 White solid (11.1 mg, 40 μmol, 79% (96% NMR-yield)); TLC: Rf = 0.23 (n-pentane/EtOAc, 60/40) [KMnO4]. The compound was isolated as a single diastereomer. However, compound 7 was observed to contain two isomers which are assigned to an open chain (major) ‘Ha’ and lactol (minor) ‘Hb’ form. 1H NMR (400 MHz, CD2Cl2, 298 K): δ = 4.69 (br s, 1 H, C3-OH), 3.16 (s, 3 H, H6a), 3.14 (s, 3 H, H6b), 2.97 (s, 3 H, H2b), 2.88 (s, 3 H, H2a), 2.51–2.40 (m, 3 H, H8,14-1), 2.37–2.26 (m, 1 H, H11), 2.18–2.10 (m, 1 H, H7-1), 2.08 (s, 3 H, H10a), 2.05–1.93 (m, 1 H, H13-1), 1.83–1.75 (m, 1 H, H7-2), 1.73–1.63 (m, 1 H, H14-2), 1.42 (s, 3 H, H10b), 1.18–1.02 (m, 1 H, H13-2), 0.69 (d, 3 J H–H = 7.5 Hz, 3 H, H12a), 0.63 (d, 3 J H–H = 7.5 Hz, 3 H, H12b) ppm. 13C{1H} NMR (101 MHz, CD2Cl2, 298 K): δ = 210.9 (C9a), 175.1 (C5b), 172.9 (C5a), 152.3 (C1), 95.6 (C9b), 94.2 (C3b), 92.8 (C3a), 55.8 (C4a), 47.7 (C4b), 45.4 (C11b), 44.6 (C11a), 38.9 (C8a), 33.5 (C14a), 30.5 (C13b), 30.2 (C14b), 30.1 (C2b), 29.8 (C10b), 29.7 (C10a), 28.8 (C13a), 28.6 (C2a), 28.1 (C6b), 27.8 (C7b), 27.8 (C6a), 27.1 (C8b), 26.2 (C7a), 17.2 (C12a), 14.5 (C12b) ppm. HRMS (ESI+): m/z calcd for [M + H]+ = [C14H23N2O4]+: 283.1652; found: 283.1658. IR (ATR): 3346 (OH), 2960, 2877, 1733, 1684, 1649 (C=O), 1549, 1449, 1414, 1382, 1340, 1308, 1259, 1172, 1153, 1122, 1094, 1061, 1002, 961, 929, 885, 843, 755, 735, 722, 661.9 cm–1.
  • 30 For the related SmI2-mediated reduction of γ-indolylketones, see: Beemelmanns C, Nitsch D, Bentz C, Reissig H.-U. Chem. Eur. J. 2019; 25: 8780
  • 32 Computational study of a SmI2-mediated reduction with chelate complex intermediates: Achazi AJ, Andrae D, Reissig H.-U, Paulus B. J. Comput. Chem. 2017; 38: 2693
  • 34 On the reduced reactivity of SmI2 towards oxime ethers, see: Ning L, Li H, Lai Z, Szostak M, Chen X, Dong Y, Jin S, An J. J. Org. Chem. 2021; 86: 2907