Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(09): 993-996
DOI: 10.1055/a-2201-7197
DOI: 10.1055/a-2201-7197
cluster
Chemical Synthesis and Catalysis in Germany
Photocatalytic [2,3]-Sigmatropic Rearrangement Reactions of Ethyl Diazoacetate
The authors acknowledge Deutsche Forschungsgemeinschaft for financial support. A.S. acknowledges the German Academic Exchange Service for a DAAD-WISE scholarship.
Abstract
We describe a photocatalytic reaction of diazo compounds with allyl sulfides under visible-light reaction conditions. In the presence of Ru(bpy)3Cl2 as a photocatalyst, a [2,3]-sigmatropic rearrangement reaction occurs that leads to the formation of homoallylic sulfides. This reaction proceeds in acetone as the solvent, which is unusual in carbene-transfer reactions, and it shows a broad substrate scope in the rearrangement reaction of allylic sulfides.
Key words
diazo compounds - photocatalysis - carbenes - rearrangement - homoallylic sulfides - allylic sulfidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2201-7197.
- Supporting Information
Publication History
Received: 30 September 2023
Accepted after revision: 30 October 2023
Accepted Manuscript online:
30 October 2023
Article published online:
20 December 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 1b Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
- 1c Lu H, Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
- 1d Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 1e Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
- 1f Empel C, Jana S, Koenigs RM. Molecules 2020; 25: 880
- 1g Wang J, Qiu D. Recent Developments of Diazo Compounds in Organic Synthesis. World Scientific; Singapore: 2021
- 2a Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
- 2b Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
- 2c West TH, Spoehrle SS. M, Kasten K, Taylor JE. Smith A. D. ACS Catal. 2015; 5: 7446
- 2d Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
- 2e Zhang X.-M, Tu Y.-Q, Zhang F.-M, Chen Z.-H, Wang S.-H. Chem. Soc. Rev. 2017; 46: 2272
- 2f Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
- 2g Empel C, Jana S, Koenigs RM. Synthesis 2021; 53: 4567
- 3a Ciszewski ŁW, Rybicka-Jasińska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
- 3b Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
- 3c Durka J, Turkowska J, Gryko D. ACS Sustainable Chem. Eng. 2021; 9: 8895
- 3d Chen Z, Xie Y, Xuan J. Eur. J. Org. Chem. 2022; e202201066
- 4 Empel C, Pei C, Koenigs RM. Chem. Commun. 2022; 58: 2788
- 5 Rybicka-Jasińska K, Shan W, Zawada K, Kadish KM, Gryko D. J. Am. Chem. Soc. 2016; 138: 15451
- 6 Rybicka-Jasinska K, Ciszewski ŁW, Gryko D. Adv. Synth. Catal. 2016; 358: 1671
- 7 Ye H.-B, Zhou X.-Y, Li L, He X.-K, Xuan J. Org. Lett. 2022; 24: 6018
- 8 Ye H.-B, Bao Y.-P, Liu T.-Y, Wei T, Yang C, Liu Q.-A, Xuan J. Tetrahedron Chem 2023; 7: 100040
- 9 Li W, Li S, Empel C, Koenigs RM, Zhou L. Angew. Chem. Int. Ed. 2023; 62: e202309947
- 10 Empel C, Jana S, Ciszewski ŁW, Zawada K, Pei C, Gryko D, Koenigs RM. Chem. Eur. J. 2023; 29: e202300214
- 11 Langletz T, Empel C, Jana S, Koenigs RM. Tetrahedron Chem 2022; 3: 100024
- 12 Li F, Pei C, Koenigs RM. Angew. Chem. Int. Ed. 2022; 61: e202111892
- 13a Kirmse W, Kapps M. Chem. Ber. 1968; 101: 994
- 13b Doyle MP, Tamblyn WH, Bagheri VJ. J. Org. Chem. 1981; 46: 5094
- 13c McMillen DW, Varga N, Reed BA, King C. J. Org. Chem. 2000; 65: 2532
- 13d Simmoneaux G, Galardon E, Paul-Roth C, Gulea M, Masson S. J. Organomet. Chem. 2001; 617–618: 360
- 13e Liao M, Wang J. Green Chem. 2007; 9: 184
- 13f Li Z, Boyarskikh V, Hansen JH, Autschbach J, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 15497
- 13g Holzwarth MS, Alt I, Plietker B. Angew. Chem. Int. Ed. 2012; 51: 5351
- 13h Xu X, Li C, Tao Z, Pan Y. Green Chem. 2017; 19: 1245
- 13i Hock KJ, Mertens L, Hommelsheim R, Spitzner R, Koenigs RM. Chem. Commun. 2017; 53: 6577
- 13j Dairo TO, Woo LK. Organometallics 2017; 36: 927
- 13k Zhang Z, Sheng Z, Yu W, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
- 14a Tan J, Zheng T, Xu K, Liu C. Org. Biomol. Chem. 2017; 15: 4946
- 14b Xu X.-B, Lin Z.-H, Liu Y, Guo J, He Y. Org. Biomol. Chem. 2017; 15: 2716
- 14c Gaykar RN, George M, Guin A, Bhattacharjee S, Biju AT. Org. Lett. 2021; 23: 3447
- 14d Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
- 15 Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
- 16 Photocatalytic Rearrangement Reactions: General Procedure The appropriate diazoalkane (0.2 mmol, 1.0 equiv) and allyl aryl sulfide (0.6 mmol, 3.0 equiv) were dissolved in acetone (2 mL), and the solution was irradiated with a module containing two blue LEDs (2 × 40 W, λ = 467 nm) overnight under Ar. When the reaction was complete, the solvent was removed under reduced pressure, and the product was purified by column chromatography (silica gel, hexane–EtOAc). Ethyl 2-(Phenylsulfanyl)pent-4-enoate (9a) Prepared according to the general procedure and purified by column chromatography [silica gel, hexane–EtOAc (80:1 to 60:1 to 40:1)] as a colorless oil; yield: 45.4 mg (96%). 1H NMR (600 MHz, CDCl3): δ = 7.33–7.23 (m, 2 H), 7.19–7.03 (m, 3 H), 5.66 (ddt, J = 27.3, 17.1, 10.2, 6.9 Hz, 1 H), 5.00–4.84 (m, 2 H), 3.93 (qd, J = 7.1, 1.7 Hz, 2 H), 3.52 (dd, J = 8.7, 6.4 Hz, 1 H), 2.49–2.41 (m, J = 14.4, 8.4, 7.0, 1.3 Hz, 1 H), 2.38–2.29 (m, 1 H), 0.98 (t, J = 7.1 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 171.6, 133.9, 133.1, 128.9, 128.0, 118.0, 61.1, 50.2, 35.8, 14.0. These data agree with those reported in the literature.13h
For selected references on [2,3]-sigmatropic rearrangement reactions of light chalcogenonium ylides, see:
For sigmatropic rearrangement reactions with arynes, see: