Subscribe to RSS
DOI: 10.1055/a-2202-4667
Synthesis of Axially Chiral Bibenzo[g]coumarin Derivatives by Rhodium-Catalyzed Oxidative Annulation of Thiocarbamates
This research was supported by a Grant-in-Aid for Scientific Research from JSPS (Specially Promoted Research, Grant No. JP 17H06092).
Abstract
Polyaromatic organic compounds have attracted significant attention because of their wide range of applications in various functional materials. Recently, transition-metal-catalyzed C–H bond activation and the subsequent oxidative cyclization with unsaturated compounds has emerged as a promising synthetic method for multiring systems. We report a two-step synthesis of binaphthyl-fused chiral bibenzo[g]coumarin derivatives by Rh-catalyzed annulative coupling reaction of BINOL-based thiocarbamates with alkynes. The optical properties of the coupling products were evaluated.
Key words
coumarins - rhodium catalysis - C–H bond activation - BINOLs - circular dichroism - polycyclic heteroaromatic compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2202-4667.
- Supporting Information
Publication History
Received: 28 August 2023
Accepted after revision: 01 November 2023
Accepted Manuscript online:
01 November 2023
Article published online:
14 December 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
- 1b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 1c Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
- 1d Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
- 1e Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
- 1f Yang Y, Li K, Cheng Y, Wan D, Li M, You J. Chem. Commun. 2016; 52: 2872
- 1g Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 1h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 1i Vásquez-Céspedes S, Wang X, Glorius F. ACS Catal. 2018; 8: 242
- 1j Santhoshkumar R, Cheng C.-H. Chem. Eur. J. 2019; 25: 9366
- 1k Kuang G, Liu G, Zhang X, Lu N, Peng Y, Xiao Q, Zhou Y. Synthesis 2020; 52: 993
- 1l Nishii Y, Miura M. ACS Catal. 2020; 10: 9747
- 1m Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Org. Biomol. Chem. 2021; 19: 1438
- 1n Dhawa U, Kaplaneris N, Ackermann L. Org. Chem. Front. 2021; 8: 4886
- 2a Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
- 2b Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
- 3 Li L, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2008; 130: 12414
- 4a Stuart DR, Bertrand-Laperle M, Burgess KM N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 4b Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
- 4c Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
- 5a Zhang X, Yin J, Yoon J. Chem. Rev. 2014; 114: 4918
- 5b Tanaka H, Inoue Y, Mori T. ChemPhotoChem 2018; 2: 386
- 5c Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 8846
- 5d Albano G, Pescitelli G, Di Bari L. Chem. Rev. 2020; 120: 10145
- 5e Hassan Z, Spuling E, Knoll DM, Lahann J, Bräse S. Chem. Soc. Rev. 2018; 47: 6947
- 6a Takishima R, Nishii Y, Hinoue T, Imai Y, Miura M. Beilstein J. Org. Chem. 2020; 16: 325
- 6b Takishima R, Nishii Y, Miura M. Org. Lett. 2021; 23: 1349
- 7a Wagner BD. Molecules 2009; 14: 210
- 7b Jung Y, Jung J, Huh Y, Kim D. J. Anal. Methods Chem. 2018; 2018: 5249765
- 7c Sun X.-y, Liu T, Sun J, Wang X.-j. RSC Adv. 2020; 10: 10826
- 8a Yang C.-W, Hsia T.-H, Chen C.-C, Lai C.-K, Liu R.-S. Org. Lett. 2008; 10: 4069
- 8b Chen S, Liu W, Ge Z, Zhang W, Wang K.-P, Hu Z.-Q. CrystEngComm 2018; 20: 5432
- 8c Shi L, Li K, Cui P.-C, Li L.-L, Pan S.-L, Li M.-Y, Yu X.-Q. J. Mater. Chem. B 2018; 6: 4413
- 8d Chen S, Liu W, Zhang W, Ge Z, Wang K.-P, Gan L.-H, Hu Z.-Q. Tetrahedron 2019; 75: 3504
- 9a Zhao Y, Han F, Yang L, Xia C. Org. Lett. 2015; 17: 1477
- 9b Yokoyama Y, Unoh Y, Bohmann RA, Satoh T, Hirano K, Bolm C, Miura M. Chem. Lett. 2015; 44: 1104
- 10a Rajesh P, Sharma K, Katiyar D. Synthesis 2016; 48: 2303
- 10b Szwaczko K. Inorganics 2022; 10: 23
- 11 Dyadyuk A, Vershinin V, Shalit H, Shalev H, More NY, Pappo D. J. Am. Chem. Soc. 2022; 144: 3676
- 12 Li N, Feng H, Gong Q, Wu C, Zhou H, Huang Z, Yang J, Chen X, Zhao N. J. Mater. Chem. C 2015; 3: 11458
- 13 O,O′-1,1′-Binaphthalene-2,2′-diyl Bis[diethyl(thiocarbamate)] (1) A 20 mL two-necked round-bottomed flask equipped with a N2 balloon was charged with (S)- or (R)-BINOL (286 mg, 1.0 mmol), DABCO (224 mg, 2.0 mmol), and THF (3.0 mL). A 60% paraffin dispersion of NaH (120 mg, 3.0 mmol) was added in a portionwise manner, then diethylthiocarbamoyl chloride (334 mg, 2.2 mmol) was added dropwise from a syringe. The resulting mixture was stirred in an oil bath at 60 °C for 18 h, then poured into ice–water and extracted with CHCl3 (×3). The combined organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography [silica gel, hexane–EtOAc (5:1)] to give a white solid; yield: (R)-1: 442 mg (86%); (S)-1: 429 mg (83%); mp 106–108 °C. HPLC [CHIRAL ART Amylose-SA column, hexane–CH3Cl (90:10), 0.5 mL/min, 25 °C, λ = 250.0 nm]: (R)-1: t R = 29.66 min; (S)-1: t R = 43.35 min. 1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 8.84 Hz, 2 H), 7.87 (d, J = 8.16 Hz, 2 H), 7.57 (d, J = 8.92 Hz, 2 H), 7.51 (d, J = 8.44 Hz, 2 H), 7.43 (td, J = 7.5, 1.16, 2 H), 7.29 (td, J = 7.5, 1.18, 2 H), 3.65–3.40 (m, 4 H), 3.11–2.80 (m, 4 H), 0.89 (t, J = 7.08 Hz, 6 H), 0.57 (t, J = 7.08 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 185.15, 149.48, 133.36, 131.50, 128.21, 127.62, 126.97, 126.32, 125.68, 124.09, 123.73, 47.44, 43.40, 12.65, 11.26. HRMS (APCI): m/z [M + H]+ calcd for C30H33N2O2S2: 517.1977; found: 517.1948. Bibenzo[g]chromenediones 3a–g; General Procedure An oven-dried 10 mL screw-top tube was charged with (R)-1 (51.7 mg, 0.1 mmol), the appropriate alkyne 2 (0.25 mmol), [Cp*RhCl2]2 (6.2 mg, 0.01 mmol), AgSbF6 (13.7 mg, 0.04 mmol), Cu(OAc)2·H2O (44.0 mg, 0.22 mmol), and CuOAc (24.5 mg, 0.20 mmol). The tube was then filled with N2, and diglyme (2.0 mL) and 1,4-dioxane (2.0 mL) were added from a syringe. The mixture was then heated at 140 °C in an oil bath for 18 h. The resulting mixture was filtered through a pad of Celite, eluting with EtOAc, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography [silica gel, hexane–EtOAc (4:1)] and GPC (CHCl3). The corresponding (S)-isomers were synthesized similarly in small batches for analysis. (R)-3,3′,4,4′-Tetraphenyl-2H,2′H-[10,10′-bibenzo[g]chromene]-2,2′-dione [(R)-3a] White solid; yield: 38 mg (55%); mp >300 °C; [α]D 20 +92.9 [(S)-3a], –94.4 [(R)-3a] (c = 0.1, CHCl3). HPLC [CHIRAL ART Amylose-SA column, hexane–CH3Cl (70:30), 0.2 mL/min, 25 °C, λ = 250.0 nm]: (S)-3a: t R = 27.17 min; (R)-3a: t R = 23.14 min. 1H NMR (400 MHz, CDCl3): δ = 7.14–7.20 (m, 10 H), 7.22–7.24 (m, 2 H), 7.28–7.30 (m, 2 H), 7.35–7.46 (m, 12 H), 7.87 (d, J = 8.2 Hz, 2 H), 7.92 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 117.2, 121.0, 125.46, 125.58, 127.65, 127.72, 128.31, 128.47, 128.61, 129.31, 129.53, 129.62, 129.79, 130.59, 134.14, 134.26, 134.77, 148.15, 151.56, 161.01. HRMS (APCI): m/z [M + H]+ Calcd for C50H31O4: 695.2217; found: 695.2211
For selected reviews, see:
For reviews, see:
For reviews, see: