RSS-Feed abonnieren
DOI: 10.1055/a-2202-4667
Synthesis of Axially Chiral Bibenzo[g]coumarin Derivatives by Rhodium-Catalyzed Oxidative Annulation of Thiocarbamates
This research was supported by a Grant-in-Aid for Scientific Research from JSPS (Specially Promoted Research, Grant No. JP 17H06092).
![](https://www.thieme-connect.de/media/synlett/202408/lookinside/thumbnails/st-2023-r0369-l_10-1055_a-2202-4667-1.jpg)
Abstract
Polyaromatic organic compounds have attracted significant attention because of their wide range of applications in various functional materials. Recently, transition-metal-catalyzed C–H bond activation and the subsequent oxidative cyclization with unsaturated compounds has emerged as a promising synthetic method for multiring systems. We report a two-step synthesis of binaphthyl-fused chiral bibenzo[g]coumarin derivatives by Rh-catalyzed annulative coupling reaction of BINOL-based thiocarbamates with alkynes. The optical properties of the coupling products were evaluated.
Key words
coumarins - rhodium catalysis - C–H bond activation - BINOLs - circular dichroism - polycyclic heteroaromatic compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2202-4667.
- Supporting Information
Publikationsverlauf
Eingereicht: 28. August 2023
Angenommen nach Revision: 01. November 2023
Accepted Manuscript online:
01. November 2023
Artikel online veröffentlicht:
14. Dezember 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
- 1b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 1c Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
- 1d Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
- 1e Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
- 1f Yang Y, Li K, Cheng Y, Wan D, Li M, You J. Chem. Commun. 2016; 52: 2872
- 1g Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 1h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 1i Vásquez-Céspedes S, Wang X, Glorius F. ACS Catal. 2018; 8: 242
- 1j Santhoshkumar R, Cheng C.-H. Chem. Eur. J. 2019; 25: 9366
- 1k Kuang G, Liu G, Zhang X, Lu N, Peng Y, Xiao Q, Zhou Y. Synthesis 2020; 52: 993
- 1l Nishii Y, Miura M. ACS Catal. 2020; 10: 9747
- 1m Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Org. Biomol. Chem. 2021; 19: 1438
- 1n Dhawa U, Kaplaneris N, Ackermann L. Org. Chem. Front. 2021; 8: 4886
- 2a Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
- 2b Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
- 3 Li L, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2008; 130: 12414
- 4a Stuart DR, Bertrand-Laperle M, Burgess KM N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 4b Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
- 4c Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
- 5a Zhang X, Yin J, Yoon J. Chem. Rev. 2014; 114: 4918
- 5b Tanaka H, Inoue Y, Mori T. ChemPhotoChem 2018; 2: 386
- 5c Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 8846
- 5d Albano G, Pescitelli G, Di Bari L. Chem. Rev. 2020; 120: 10145
- 5e Hassan Z, Spuling E, Knoll DM, Lahann J, Bräse S. Chem. Soc. Rev. 2018; 47: 6947
- 6a Takishima R, Nishii Y, Hinoue T, Imai Y, Miura M. Beilstein J. Org. Chem. 2020; 16: 325
- 6b Takishima R, Nishii Y, Miura M. Org. Lett. 2021; 23: 1349
- 7a Wagner BD. Molecules 2009; 14: 210
- 7b Jung Y, Jung J, Huh Y, Kim D. J. Anal. Methods Chem. 2018; 2018: 5249765
- 7c Sun X.-y, Liu T, Sun J, Wang X.-j. RSC Adv. 2020; 10: 10826
- 8a Yang C.-W, Hsia T.-H, Chen C.-C, Lai C.-K, Liu R.-S. Org. Lett. 2008; 10: 4069
- 8b Chen S, Liu W, Ge Z, Zhang W, Wang K.-P, Hu Z.-Q. CrystEngComm 2018; 20: 5432
- 8c Shi L, Li K, Cui P.-C, Li L.-L, Pan S.-L, Li M.-Y, Yu X.-Q. J. Mater. Chem. B 2018; 6: 4413
- 8d Chen S, Liu W, Zhang W, Ge Z, Wang K.-P, Gan L.-H, Hu Z.-Q. Tetrahedron 2019; 75: 3504
- 9a Zhao Y, Han F, Yang L, Xia C. Org. Lett. 2015; 17: 1477
- 9b Yokoyama Y, Unoh Y, Bohmann RA, Satoh T, Hirano K, Bolm C, Miura M. Chem. Lett. 2015; 44: 1104
- 10a Rajesh P, Sharma K, Katiyar D. Synthesis 2016; 48: 2303
- 10b Szwaczko K. Inorganics 2022; 10: 23
- 11 Dyadyuk A, Vershinin V, Shalit H, Shalev H, More NY, Pappo D. J. Am. Chem. Soc. 2022; 144: 3676
- 12 Li N, Feng H, Gong Q, Wu C, Zhou H, Huang Z, Yang J, Chen X, Zhao N. J. Mater. Chem. C 2015; 3: 11458
- 13 O,O′-1,1′-Binaphthalene-2,2′-diyl Bis[diethyl(thiocarbamate)] (1) A 20 mL two-necked round-bottomed flask equipped with a N2 balloon was charged with (S)- or (R)-BINOL (286 mg, 1.0 mmol), DABCO (224 mg, 2.0 mmol), and THF (3.0 mL). A 60% paraffin dispersion of NaH (120 mg, 3.0 mmol) was added in a portionwise manner, then diethylthiocarbamoyl chloride (334 mg, 2.2 mmol) was added dropwise from a syringe. The resulting mixture was stirred in an oil bath at 60 °C for 18 h, then poured into ice–water and extracted with CHCl3 (×3). The combined organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography [silica gel, hexane–EtOAc (5:1)] to give a white solid; yield: (R)-1: 442 mg (86%); (S)-1: 429 mg (83%); mp 106–108 °C. HPLC [CHIRAL ART Amylose-SA column, hexane–CH3Cl (90:10), 0.5 mL/min, 25 °C, λ = 250.0 nm]: (R)-1: t R = 29.66 min; (S)-1: t R = 43.35 min. 1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 8.84 Hz, 2 H), 7.87 (d, J = 8.16 Hz, 2 H), 7.57 (d, J = 8.92 Hz, 2 H), 7.51 (d, J = 8.44 Hz, 2 H), 7.43 (td, J = 7.5, 1.16, 2 H), 7.29 (td, J = 7.5, 1.18, 2 H), 3.65–3.40 (m, 4 H), 3.11–2.80 (m, 4 H), 0.89 (t, J = 7.08 Hz, 6 H), 0.57 (t, J = 7.08 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 185.15, 149.48, 133.36, 131.50, 128.21, 127.62, 126.97, 126.32, 125.68, 124.09, 123.73, 47.44, 43.40, 12.65, 11.26. HRMS (APCI): m/z [M + H]+ calcd for C30H33N2O2S2: 517.1977; found: 517.1948. Bibenzo[g]chromenediones 3a–g; General Procedure An oven-dried 10 mL screw-top tube was charged with (R)-1 (51.7 mg, 0.1 mmol), the appropriate alkyne 2 (0.25 mmol), [Cp*RhCl2]2 (6.2 mg, 0.01 mmol), AgSbF6 (13.7 mg, 0.04 mmol), Cu(OAc)2·H2O (44.0 mg, 0.22 mmol), and CuOAc (24.5 mg, 0.20 mmol). The tube was then filled with N2, and diglyme (2.0 mL) and 1,4-dioxane (2.0 mL) were added from a syringe. The mixture was then heated at 140 °C in an oil bath for 18 h. The resulting mixture was filtered through a pad of Celite, eluting with EtOAc, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography [silica gel, hexane–EtOAc (4:1)] and GPC (CHCl3). The corresponding (S)-isomers were synthesized similarly in small batches for analysis. (R)-3,3′,4,4′-Tetraphenyl-2H,2′H-[10,10′-bibenzo[g]chromene]-2,2′-dione [(R)-3a] White solid; yield: 38 mg (55%); mp >300 °C; [α]D 20 +92.9 [(S)-3a], –94.4 [(R)-3a] (c = 0.1, CHCl3). HPLC [CHIRAL ART Amylose-SA column, hexane–CH3Cl (70:30), 0.2 mL/min, 25 °C, λ = 250.0 nm]: (S)-3a: t R = 27.17 min; (R)-3a: t R = 23.14 min. 1H NMR (400 MHz, CDCl3): δ = 7.14–7.20 (m, 10 H), 7.22–7.24 (m, 2 H), 7.28–7.30 (m, 2 H), 7.35–7.46 (m, 12 H), 7.87 (d, J = 8.2 Hz, 2 H), 7.92 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 117.2, 121.0, 125.46, 125.58, 127.65, 127.72, 128.31, 128.47, 128.61, 129.31, 129.53, 129.62, 129.79, 130.59, 134.14, 134.26, 134.77, 148.15, 151.56, 161.01. HRMS (APCI): m/z [M + H]+ Calcd for C50H31O4: 695.2217; found: 695.2211
For selected reviews, see:
For reviews, see:
For reviews, see: