Subscribe to RSS
DOI: 10.1055/a-2211-6538
Defluorinative Asymmetric Allylic Alkylations
This work was supported by the projects PID2020-116859GA-I00 and CNS2022-135457, funded by MCIN/AEI/10.13039/501100011033. P.R. thanks the Ministry of Education (MEFP) for a collaboration fellowship, J.D. thanks the Generalitat de Catalunya for the AGAUR-FI Joan Oró predoctoral fellowship BDNS-657443, and M.G. thanks the Ministry of Science (MICIN) for an FPI predoctoral fellowship PRE2021-097347.
Abstract
The introduction of allyl fluorides as alternative electrophiles in asymmetric allylic alkylation reactions has recently attracted significant interest. Despite the intrinsic thermodynamically demanding C–F bond-cleavage event, the fluorophilic nature of the silicon atom is key in assisting the activation and cleavage of the allylic C–F bond. Thus, the use of silylated compounds as unconventional nucleophiles, together with the Lewis basicity of fluorine when acting as a leaving group, enables the development of innovative chemical transformations within mild and selective catalytic schemes. This Synpacts article summarizes the diverse defluorinative asymmetric allylic alkylations with allyl fluorides reported to date under both chiral Lewis base and transition-metal catalysis.
Key words
C–F bond activation - defluorination - asymmetric catalysis - allylic alkylation - Lewis base catalysis - transition-metal catalysisPublication History
Received: 03 November 2023
Accepted after revision: 15 November 2023
Accepted Manuscript online:
15 November 2023
Article published online:
02 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 1b Graening T, Schmalz H.-G. Angew. Chem. Int. Ed. 2003; 42: 2580
- 1c Trost BM. J. Org. Chem. 2004; 69: 5813
- 1d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 1e Trost BM, Zhang T, Sieber JD. Chem. Sci. 2010; 1: 427
- 2a Trost BM. Tetrahedron 2015; 71: 5708
- 2b Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 2c Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
- 2d Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 2e Han J.-F, Guo P, Zhang X.-G, Liao J.-B, Ye K.-Y. Org. Biomol. Chem. 2020; 18: 7740
- 3a Rios R. Catal. Sci. Technol. 2012; 2: 267
- 3b Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 3c Chen Z, Chen Z, Du W, Chen Y. Chem. Rec. 2020; 20: 541
- 3d Calcatelli A, Cherubini-Celli A, Carletti E, Companyó X. Synthesis 2020; 52: 2922
- 4a Furukawa T, Kawazoe J, Zhang W, Nishimine T, Tokunaga E, Matsumoto T, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2011; 50: 9684
- 4b Companyó X, Valero G, Ceban V, Calvet T, Font-Bardía M, Moyano A, Rios R. Org. Biomol. Chem. 2011; 9: 7986
- 4c Wang B, Companyó X, Li J, Moyano A, Rios R. Tetrahedron Lett. 2012; 53: 4124
- 4d Companyó X, Mazzanti A, Moyano A, Janecka A, Rios R. Chem. Commun. 2013; 49: 1184
- 4e Companyó X, Geant P.-Y, Mazzanti A, Moyano A, Rios R. Tetrahedron 2014; 70: 75
- 4f Ceban V, Tauchman J, Meazza M, Gallagher G, Light ME, Gergelitsová I, Vesely J, Rios R. Sci. Rep. 2015; 5: 16886
- 4g Sun M, Chen J.-F, Chen S, Li C. Org. Lett. 2019; 21: 1278
- 4h Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11430
- 4i Song T, Arseniyadis S, Cossy J. Org. Lett. 2019; 21: 603
- 4j Ghorai S, Rehman S, Xu W.-B, Huang W.-Y, Li C. Org. Lett. 2020; 22: 3519
- 4k Meazza M, Cruz CM, Ortuño AM, Cuerva JM, Crovetto L, Rios R. Chem. Sci. 2021; 12: 4503
- 4l Richard F, Aubert S, Katsina T, Reinalda L, Palomas D, Crespo-Otero R, Huang J, Leitch DC, Mateos C, Arseniyadis S. Nat. Synth. 2022; 1: 641
- 5a You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
- 5b Wang X, Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2017; 56: 1116
- 5c Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914
- 5d Chen P, Li Y, Chen Z, Du W, Chen Y. Angew. Chem. Int. Ed. 2020; 59: 7083
- 5e Paria S, Carletti E, Marcon M, Cherubini-Celli A, Mazzanti A, Rancan M, Dell’Amico L, Bonchio M, Companyó X. J. Org. Chem. 2020; 85: 4463
- 5f Crisenza GE. M, Faraone A, Gandolfo E, Mazzarella D, Melchiorre P. Nat. Chem. 2021; 13: 575
- 5g Yang P, Wang R, Cheng Y, Zheng C, You S. Angew. Chem. Int. Ed. 2022; 61: e202213520
- 5h Ding W, Li M, Fan J, Cheng X. Nat. Commun. 2022; 13: 5642
- 5i Bertuzzi G, Ombrosi G, Bandini M. Org. Lett. 2022; 24: 4354
- 5j Brunetti A, Bertuzzi G, Bandini M. Synthesis 2023; 55: 3047
- 6a Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
- 6b Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
- 6c Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
- 7a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 7b Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
- 8a Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
- 8b Wang Y, Liu A. Chem. Soc. Rev. 2020; 49: 4906
- 8c Zhao B, Rogge T, Ackermann L, Shi Z. Chem. Soc. Rev. 2021; 50: 8903
- 8d Röckl JL, Robertson EL, Lundberg H. Org. Biomol. Chem. 2022; 20: 6707
- 8e Wang Z, Sun Y, Shen L.-Y, Yang W.-C, Meng F, Li P. Org. Chem. Front. 2022; 9: 853
- 9 Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2014; 53: 517
- 10 Nishimine T, Taira H, Tokunaga E, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 359
- 11 Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 6744
- 12 Nishimine T, Taira H, Mori S, Matsubara O, Tokunaga E, Akiyama H, Soloshonok VA, Shibata N. Chem. Commun. 2017; 53: 1128
- 13 Zi Y, Lange M, Schultz C, Vilotijevic I. Angew. Chem. Int. Ed. 2019; 58: 10727
- 14 Lange M, Zi Y, Vilotijevic I. J. Org. Chem. 2020; 85: 1259
- 15 Zi Y, Lange M, Vilotijevic I. Chem. Commun. 2020; 56: 5689
- 16 Sumii Y, Nagasaka T, Wang J, Uno H, Shibata N. J. Org. Chem. 2020; 85: 15699
- 17 Duran J, Mateos J, Moyano A, Companyó X. Chem. Sci. 2023; 14: 7147 For a preliminary version of this work deposited inChemRxiv, see: Duran J., Mateos J., Moyano A., Companyó X.; ChemRxiv; 2023, preprint, DOI: 10.26434/chemrxiv-2023-wxmzv
- 18 Kumar S, Lange M, Zi Y, Görls H, Vilotijevic I. Chem. Eur. J. 2023; 29: e202300641. For a preliminary version of this work deposited in ChemRxiv, see: Kumar S., Lange M., Zi Y., Görls H., Vilotijevic I.; ChemRxiv; 2023, preprint; DOI: 10.26434/chemrxiv-2023-55tgl
- 19 Trost BM, Gholami H, Zell D. J. Am. Chem. Soc. 2019; 141: 11446
- 20 Hazari A, Gouverneur V, Brown JM. Angew. Chem. Int. Ed. 2009; 48: 1296
- 21 Trost BM, Jiao Z, Gholami H. Chem. Sci. 2021; 12: 10532
- 22 Butcher TW, Yang JL, Amberg WM, Watkins NB, Wilkinson ND, Hartwig JF. Nature 2020; 583: 548
For selected reviews, see:
For selected reviews on transition-metal-catalyzed AAA, see:
For selected reviews on Lewis base catalyzed AAA, see:
For selected examples using stabilized nucleophiles, see:
For selected examples with unconventional nucleophiles, see:
For selected reviews of C–F bond activation, see:
For selected reviews on defluorinative transformations, see: