Subscribe to RSS
DOI: 10.1055/a-2214-7484
Design of Indole-Functionalized Phosphepines towards New Organic Chromophores
This research was financially supported by ShanghaiTech University start-up funding.
Abstract
Organic chromophores emerged as diverse functional materials in the areas of organic catalysis, toxic materials sensing, bio-imaging, and organic electronic devices. With rich chemical and electronic structures, main-group elements have been extensively implanted in organic chromophores to fine-tune the chemical/electronic structures and optoelectronic properties. In this Synpact article, we present a concise overview of the development of phosphorus (P)-containing organic chromophores, further highlighting our recent contributions in the field. A new aspect of combining the P element with the indole moiety was pursued to construct a new series of seven-membered P-organic chromophores; namely, indole-functionalized phosphepines. The new combination endowed the system with rich chemical and electronic structures, for which intriguing photophysical properties were consequently revealed. The combination provided an efficient synthetic protocol to access new P-heterocycles and also offered a new strategy to design functional organic chromophores.
Key words
heterocycles - phosphepines - organic chromophores - conformation - photophysical propertyPublication History
Received: 25 September 2023
Accepted after revision: 20 November 2023
Accepted Manuscript online:
20 November 2023
Article published online:
02 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Angew. Chem. Int. Ed. 2019; 58: 5170
- 2 Mishra A, Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
- 3 Wang D, Tang BZ. Acc. Chem. Res. 2019; 52: 2559
- 4 Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
- 5 Schickedanz K, Radtke J, Bolte M, Lerner H.-W, Wagner M. J. Am. Chem. Soc. 2017; 139: 2842
- 6 Tan G, Wang X. Acc. Chem. Res. 2017; 50: 1997
- 7 Baumgartner T. Acc. Chem. Res. 2014; 47: 1613
- 8 Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat. Photonics 2019; 13: 678
- 9 Cruz CD, Christensen PR, Chronister EL, Casanova D, Wolf MO, Bardeen CJ. J. Am. Chem. Soc. 2015; 137: 12552
- 10 Murai M, Abe M, Ogi S, Yamaguchi S. J. Am. Chem. Soc. 2022; 144: 20385
- 11 Hindenberg P, Romero-Nieto C. Synlett 2016; 27: 2293
- 12 Regulska E, Romero-Nieto C. Dalton Trans. 2018; 10344
- 13 Yang Z, Li C, Liu C, Li X, Yu N, Ren Y. Angew. Chem. Int. Ed. 2022; 61: e202212844
- 14 Ascherl JD. R, Neiβ C, Vogel A, Graf J, Rominger F, Oeser T, Hampel F, Görling A, Kivala M. Chem. Eur. J. 2020; 26: 13157
- 15 Wu D, Hu C, Qiu L, Duan Z, Mathey F. Eur. J. Org. Chem. 2019; 6369
- 16 Su H.-C, Fadhel O, Yang C.-J, Cho T.-Y, Fave C, Hissler M, Wu C.-C, Réau R. J. Am. Chem. Soc. 2006; 128: 983
- 17 Dienes Y, Durben S, Kárpát T, Neumann T, Englert U, Nyulázii L, Baumgartner T. Chem. Eur. J. 2007; 13: 7487
- 18 Daaoub A, Morris JN. F, Béland VA, Demay-Drouhard P, Hussein A, Higg SJ, Sadeghi H, Nichols RJ, Vezzoli A, Baumgartner T, Sangtarash S. Angew. Chem. Int. Ed. 2023; 62: e202302150
- 19 Gaffen JR, Bentley JN, Torres LC, Chu C, Baumgartner T, Caputo CB. Chem 2019; 5: 1567
- 20 Fisher L, Wossidlo F, Frost D, Coles NT, Steinhauer S, Riedel S, Müller C. Chem. Commun. 2021; 57: 9522
- 21 Wossidlo F, Frost DS, Lin J, Coles NT, Klimov K, Weber M, Böttcher T, Müller C. Chem. Eur. J. 2021; 27: 12788
- 22 Müller C, Vogt D. Dalton Trans. 2007; 5505
- 23 Müller C, Wasserberg D, Weemers JJ. M, Pidko EA, Hoffmann S, Lutz M, Spek AL, Meskers SC. J, Janssen RA, van Santen RA, Vogt D. Chem. Eur. J. 2007; 13: 4548
- 24 Pfeifer G, Chahdoura F, Papke M, Weber M, Szuűcs R, Geffroy B, Tondelier D, Nyulászi L, Hissler M, Müller C. Chem. Eur. J. 2020; 26: 10534
- 25 Romero-Nieto C, López-Andarias A, Egler-Lucas C, Gebert F, Neus J.-R, Pilgram O. Angew. Chem. Int. Ed. 2015; 54: 15872
- 26 Hindenberg P, Bush M, Paul A, Bernhardt M, Gemessy P, Rominger F, Romero-Nieto C. Angew. Chem. Int. Ed. 2018; 57: 15157
- 27 Hindenberg P, López-Andarias A, Rominger F, de Cózar A, Romero-Nieto C. Chem. Eur. J. 2017; 23: 13919
- 28 Grzybowski M, Taki M, Senda K, Sato Y, Ariyoshi T, Okada Y, Kawakami R, Imamura T, Yamaguchi S. Angew. Chem. Int. Ed. 2018; 57: 10137
- 29 Borst ML. G, Bulo RE, Gibney DJ, Alem Y, de Kanter FJ. J, Ehlers AW, Schakel M, Lutz M, Spek AL, Lammertsma K. J. Am. Chem. Soc. 2005; 127: 16985
- 30 Borst ML. G, Bulo RE, Winkel CW, Gibney DJ, Ehlers AW, Schakel M, Lutz M, Spek AL, Lammertsma K. J. Am. Chem. Soc. 2005; 127: 5800
- 31 Jansen H, Slootweg JC, Lammertsma K. Beilstein J. Org. Chem. 2011; 7: 1713
- 32 Kawashima I, Imoto H, Ishida M, Furuta H, Yamamto S, Mitsuishi M, Ianaka S, Fujii T, Naka K. Angew. Chem. Int. Ed. 2019; 131: 11812
- 33 Shukla D, Wan P. J. Am. Chem. Soc. 1993; 115: 2990
- 34 Kotani R, Liu L, Kumar P, Kuramochi H, Tahara T, Liu P, Osuka A, Karadakov PB, Saito S. J. Am. Chem. Soc. 2020; 142: 14985
- 35 Chen Y, Chang K.-H, Meng F.-Y, Tseng SM, Chou P.-T. Angew. Chem. Int. Ed. 2016; 60: 7205
- 36 Ren Y, Sezen M, Gao F, Jäkle F, Loo Y.-L. Chem. Sci. 2016; 7: 4211
- 37 Delouche T, Mocanu A, Roisnel T, Szücs R, Jacques E, Benkoz Z, Nyulaszi L, Bouit P.-A, Hissler M. Org. Lett. 2019; 21: 802
- 38 Yang Z, Li X, Yang K, Zhang Z, Wang Y, Yu N, Baumgartner T, Ren Y. Org. Lett. 2022; 24: 2045
- 39 Yang Z, Li X, Yang K, Yu N, Gao R, Ren Y. J. Org. Chem. 2023; 88: 2792
- 40 Li X, Liu Z, Li C, Gao R, Qi Y, Ren Y. J. Org. Chem. 2023; 88: 13678
- 41 Padberg K, Ascherl JD. R, Hampel F, Kivala M. Chem. Eur. J. 2020; 26: 3474
- 42 Regulska E, Ruppert H, Rominger F, Romero-Nieto C. J. Org. Chem. 2020; 85: 1247
- 43 Delouche T, Mokrai R, Roisnel T, Tondelier D, Geffroy B, Nyulászi L, Benkö Z, Hissler M, Bouit P.-A. Chem. Eur. J. 2020; 26: 1856
- 44 He X, Borau-Garcia J, Woo AY. Y, Trudel S, Baumgartner T. J. Am. Chem. Soc. 2013; 135: 1137