CC BY 4.0 · Synlett 2024; 35(09): 1033-1041 DOI: 10.1055/a-2236-8949
cluster
Chemical Synthesis and Catalysis in Germany
Design of Imidazo[1,2-a ]pyridine-Based Donor–Acceptor Chromophores through a Multicomponent Approach
Mareen Stahlberger
a
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
,
Milada Mergel
a
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
,
John Marques dos Santos
b
Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
,
Tomas Matulaitis
b
Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
,
Martin Nieger
c
Department of Chemistry University of Helsinki, P. O. Box 55, 00014 University of Helsinki, Finland
,
Eli Zysman-Colman∗
b
Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
,
a
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
d
Institute of Biological and Chemical Systems Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
› Author Affiliations The authors acknowledge Deutsche Forschungsgemeinschaft (DFG) support under Germany’s Excellence Strategy – 3DMM2O – EXC-2082/1-390761711, the KIT Campus Transfer GmbH for the financial support to M.S. for her Ph.D. studies. The St Andrews team thanks the Engineering and Physical Sciences Research Council (EP/R035164/1, EP/W007517/1).
Abstract
A series of donor-acceptor chromophores was synthesized bearing a 3-aminoimidazo[1,2-a ]pyridine donor motive. Through DFT calculations, different combinations of the ImPy donor motive and different electron acceptors were assessed. In combination with an anthraquinone acceptor, the calculated ΔE
ST values were in range to suggest that these compounds would emit via thermally activated delayed fluorescence. Based on these findings, a series of ImPy-Aq emitters with different geometries and substitution patterns was synthesized through GBB-3CR and Suzuki coupling reactions. According to preliminary experimental data, the compounds were only slightly emissive at ambient temperatures due to a combination of low radiative rates and competing non-radiative deactivation pathways.
Key words
multicomponent reaction -
imidazo[1,2-
a ]pyridine -
Suzuki coupling -
thermally activated delayed fluorescence -
donor-acceptor chromophores
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2236-8949.
Supporting Information
Primary Data
The primary data and additional information on the chemical syntheses in this report are available via Chemotion repository:
https://dx.doi.org/10.14272/collection/MSB_2023-07-12. The research data supporting this publication can be accessed at
https://doi.org/10.17630/85cd88f6-5e2f-4916-a8fd-b121ac024d61.
Primary Data
Publication History
Received: 28 September 2023
Accepted after revision: 02 January 2024
Accepted Manuscript online: 02 January 2024
Article published online: 01 February 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1
Boltjes A,
Dömling A.
Eur. J. Org. Chem. 2019; 7007
2
Wolff FE,
Hofener S,
Elstner M,
Wesolowski TA.
J. Phys. Chem. A 2019; 123: 4581
3a
Bienaymé H,
Bouzid K.
Angew. Chem. Int. Ed. 1998; 110: 2349
3b
Blackburn C,
Guan B,
Fleming P,
Shiosaki K,
Tsai S.
Tetrahedron Lett. 1998; 39: 3635
3c
Groebke K,
Weber L,
Mehlin F.
Synlett 1998; 661
4a
de Moliner F,
Kielland N,
Lavilla R,
Vendrell M.
Angew. Chem. Int. Ed. 2017; 56: 3758
4b
Finney NS.
Curr. Opin. Chem. Biol. 2006; 10: 238
4c
Levi L,
Muller TJ.
Chem. Soc. Rev. 2016; 45: 2825
4d
Rocha RO,
Rodrigues MO,
Neto BA. D.
ACS Omega 2020; 5: 972
4e
Vendrell M,
Zhai D,
Er JC,
Chang YT.
Chem. Rev. 2012; 112: 4391
5
Burchak ON,
Mugherli L,
Ostuni M,
Lacapere JJ,
Balakirev MY.
J. Am. Chem. Soc. 2011; 133: 10058
6
Shahrisa A,
Esmati S.
Synlett 2013; 24: 595
7
Balijapalli U,
Iyer SK.
Dyes Pigm. 2015; 121: 88
8a
Stahlberger M,
Schwarz N,
Hassan Z,
Zippel C,
Hohmann J,
Nieger M,
Bräse S.
Chem. Eur. J. 2022; 28: e202103511
8b
Stahlberger M,
Steinlein O,
Adam CR,
Rotter M,
Hohmann J,
Nieger M,
Köberle B,
Bräse S.
Org. Biomol. Chem. 2022; 3598
9a
Endo A,
Ogasawara M,
Takahashi A,
Yokoyama D,
Kato Y,
Adachi C.
Adv. Mater. 2009; 21: 4802
9b
Uoyama H,
Goushi K,
Shizu K,
Nomura H,
Adachi C.
Nature 2012; 492: 234
9c
Hong G,
Gan X,
Leonhardt C,
Zhang Z,
Seibert J,
Busch JM,
Bräse S.
Adv. Mater. 2021; 33: e2005630
10
Kothavale S,
Lee KH,
Lee JY.
Chem. Eur. J. 2020; 26: 845
11
Liu S,
Zhang H,
Li Y,
Liu J,
Du L,
Chen M,
Kwok RT. K,
Lam JW. Y,
Phillips DL,
Tang BZ.
Angew. Chem. Int. Ed. 2018; 57: 15189
12
Synthesis of p -ImPyAq (7): Compound 4a (111 mg, 298 μmol, 1.00 equiv), 6 (100 mg, 298 μmol, 1.00 equiv), Pd(OAc)2 (3.36 mg, 14 μmol, 5 mol%), RuPhos (14 mg, 29 μmol, 1.00 equiv), and Cs2 CO3 (293 mg, 89 μmol, 3.00 equiv) were dissolved in a mixture of toluene and water (4:1, 4 mL). The mixture was stirred argon atmosphere for 16 h at 110 °C. The solvent was removed under reduced pressure and the residue was purified via flash chromatography (SiO2 , CH/EtOAc 7:1 to 1:1). Compound 7 (91 mg, 182 μmol, 61%) was obtained as an orange solid.
Analytical data of 7 : Rf
= 0.43 (SiO2 , cyclohexane/EtOAc 1:1). 1 H NMR (500 MHz, CDCl3 ): δ = 8.39 (d, J = 7.9 Hz, 1 H, CHAr ), 8.35–8.31 (m, 2 H, CHAr ), 8.23 (dt, J = 6.9, 1.2 Hz, 1 H, CHAr ), 8.17 (d, J = 1.7 Hz, 1 H, CHAr ), 7.82–7.78 (m, 2 H, CHAr ), 7.76 (s, 2 H, CHAr ), 7.65 (dd, J = 7.9, 1.7 Hz, 1 H, CHAr ), 7.55 (dt, J = 9.0, 1.2 Hz, 1 H, CHAr ), 7.13 (ddd, J = 9.0, 6.6, 1.3 Hz, 1 H, CHAr ), 6.77 (td, J = 6.8, 1.2 Hz, 1 H, CHAr ), 3.12 (br, 1 H, NH ), 2.10 (s, 6 H, CH3 ), 1.11 (s, 9 H, CH3 ). 13 C NMR (126 MHz, CDCl3 ): δ = 183.5 (Cq , CO), 183.2 (Cq , CO), 148.0 (Cq ), 142.2 (Cq ), 139.1 (Cq ), 139.0 (Cq ), 135.5 (Cq ), 135.4 (CHAr ), 134.9 (Cq ), 134.3 (Cq ), 134.2 (CHAr ), 134.2 (CHAr ), 133.7 (2C, Cq ), 132.2 (Cq ), 128.3 (CHAr ), 127.7 (CHAr ), 127.4 (CHAr ), 127.4 (CHAr ), 127.3 (CHAr ), 127.3 (2C, CHAr ), 124.1 (CHAr ), 123.7 (Cq ), 123.6 (CHAr ), 117.5 (CHAr ), 111.4 (CHAr ), 56.3 (Cq ), 30.4 (3C, CH3 ), 20.8 (2C, CH3 ). IR (ATR): 2965 (w), 2921 (w), 1666 (vs), 1588 (s), 1445 (w), 1363 (w), 1343 (m), 1323 (s), 1299 (s), 1286 (s), 1268 (s), 1241 (s), 1214 (m), 1183 (m), 1159 (m), 1037 (w), 1031 (w), 1004 (w), 959 (w), 929 (s), 895 (w), 882 (m), 858 (m), 841 (w), 817 (w), 789 (w), 762 (vs), 741 (w), 731 (m), 710 (vs), 674 (m), 636 (w), 625 (w), 606 (w), 588 (m), 561 (w), 524 (w), 436 (m), 407 (m), 382 (m) cm–1 . FAB-MS: m /z (%) = 500 (53), 155 (33), 154 (100), 138 (43), 137 (69), 136 (80), 107 (34), 95 (28), 91 (42). HRMS-FAB: m /z [M + H]+ calcd for C33 H30 O2 N3 : 500.2333; found: 500.2330.
13a
Synthesis of m -BisImPyAq (8) : Compound 4b (557 mg, 1.05 mmol, 1.00 equiv), 6 (350 mg, 1.05 mmol, 1.00 equiv), RuPhos (48.9 mg, 105 μmol, 0.10 equiv), Cs2 CO3 (1.02 g, 3.14 mmol, 3.00 equiv) and Pd(OAc)2 (11.8 mg, 52.4 μmol, 0.05 equiv) were dissolved under argon atmosphere in a mixture of toluene and water (4:1, 25 mL) and stirred for 16 h at 110 °C. The solvent was removed under reduced pressure, and the residue was purified via flash chromatography (SiO2 , CH/EE 7:1 to 1:10). Compound 8 (656 mg, 995 μmol, 95%) was isolated as a red solid.
Analytical data of 8:
Rf
= 0.16 (SiO2 , cyclohexane/EtOAc 1:6). 1 H NMR (500 MHz, CDCl3 ): δ = 8.71 (d, J = 1.9 Hz, 1 H, CHAr ), 8.64 (t, J = 1.6 Hz, 1 H, CHAr ), 8.41 (d, J = 8.1 Hz, 1 H, CHAr ), 8.39–8.31 (m, 4 H, CHAr ), 8.27 (dt, J = 6.9, 1.2 Hz, 2 H, CHAr ), 8.23 (dd, J = 8.1, 2.0 Hz, 1 H, CHAr ), 7.87–7.77 (m, 2 H, CHAr ), 7.57 (dt, J = 9.0, 1.1 Hz, 2 H, CHAr ), 7.17 (ddd, J = 9.0, 6.6, 1.4 Hz, 2 H, CHAr ), 6.81 (td, J = 6.8, 1.2 Hz, 2 H, CHAr ), 3.34 (s, 2 H, NH ), 1.11 (s, 18 H, CH3 ). 13 C NMR (126 MHz, CDCl3 ): δ = 183.4 (2C, Cq , CO), 183.2 (2C, Cq , CO), 147.2 (Cq ), 142.3 (2C, Cq ), 139.2 (2C, Cq ), 139.1 (Cq ,), 136.4 (2C, Cq ), 134.3 (CHAr ), 134.2 (CHAr ), 134.0 (Cq ), 133.9 (Cq ), 132.8 (CHAr ), 132.3 (Cq ), 128.5 (CHAr ), 128.2 (CHAr ), 127.4 (CHAr ), 126.3 (2C, CHAr ), 125.8 (CHAr ), 124.3 (2C, CHAr ), 124.1 (2C, Cq ), 123.7 (2C, CHAr ), 117.5 (2C, CHAr ), 111.6 (2C, CHAr ), 56.8 (2C, Cq ), 30.6 (6C, CH3 ). IR (ATR): 2965 (m), 2929 (w), 2904 (w), 2868 (w), 1732 (w), 1672 (vs), 1632 (w), 1591 (vs), 1504 (w), 1473 (w), 1460 (w), 1441 (w), 1390 (w), 1361 (vs), 1323 (vs), 1296 (vs), 1239 (s), 1215 (vs), 1201 (vs), 1162 (m), 1112 (m), 1044 (m), 975 (m), 931 (s), 887 (m), 853 (m), 795 (w), 754 (vs), 732 (vs), 711 (vs), 670 (s), 639 (s), 633 (s), 605 (s), 483 (s), 448 (s), 404 (s), 392 (s), 381 (s) cm–1 . FAB-MS: m /z (%) = 661 (19), 660 (55), 659 (100) [M + H]+ , 658 (30), 602 (30), 601 (39), 546 (26), 545 (27), 484 (25), 483 (73), 441 (26). HRMS-FAB: m /z [M + H]+ calcd for C42 H39 O2 N6 : 659.3129; found: 659.3130.
13b CCDC 2283444 (8 ) contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
14
Synthesis of o -BisImPyAq (9) : 2-Aminopyridine (41.5 mg, 440 µmol, 2.00 equiv), 10 (75 mg, 220 μmol, 1.00 equiv), tert -butyl isonitrile (36.6 mg, 50 μL, 440 μmol, 2.00 equiv) and a solution of perchloric acid in methanol (1 M, 4.42 mg, 44 μL, 44.0 μmol, 0.20 equiv) were dissolved in chloroform and stirred at 60 °C for 1 d. The solvent was removed under reduced pressure, and the residue was purified via flash chromatography (SiO2 , CH/EtOAc 5:1 to 1:10). Compound 9 (134 mg, 203 μmol, 92%) was isolated as an orange solid.
Analytical data of 9 : Rf
= 0.06 (SiO2 , CH/EtOAc 1:6). 1 H NMR (500 MHz, CDCl3 ): δ = 8.71 (d, J = 1.9 Hz, 1 H, CHAr ), 8.64 (t, J = 1.6 Hz, 1 H, CHAr ), 8.39–8.31 (m, 4 H, CHAr ), 8.30–8.17 (m, 4 H, CHAr ), 7.87–7.78 (m, 2 H, CHAr ), 7.57 (dt, J = 8.9, 1.1 Hz, 2 H, CHAr ), 7.25–7.13 (m, 2 H, CHAr ), 6.80 (td, J = 6.8, 1.2 Hz, 2 H, CHAr ), 3.35 (s, 2 H, NH ), 1.10 (s, 18 H, CH3 ). 13 C NMR (126 MHz, CDCl3 ): δ = 182.9 (Cq , CO), 181.9 (Cq , CO), 147.0 (Cq ), 142.6 (2C, Cq ), 139.3 (Cq ), 137.7 (Cq ), 136.2 (CHAr ), 135.2 (2C, Cq ), 134.2 (2C, Cq ), 134.2 (2C, CHAr ), 133.7 (CHAr ), 133.5 (Cq ), 133.4 (Cq ), 133.1 (Cq ), 132.5 (2C, Cq ), 131.7 (CHAr ), 129.1 (CHAr ), 128.9 (CHAr ), 127.5 (CHAr ), 127.3 (CHAr ), 127.0 (CHAr ), 124.6 (Cq ), 124.4 (2C, CHAr ), 123.5 (2C, CHAr ), 117.4 (2C, CHAr ), 111.4 (2C, CHAr ), 56.7 (2C, Cq ), 30.6 (6C, CH3 ). IR: 3369 (w), 2958 (w), 2924 (w), 2854 (w), 1672 (vs), 1630 (w), 1591 (m), 1554 (w), 1550 (w), 1500 (w), 1473 (w), 1455 (w), 1441 (w), 1388 (w), 1364 (m), 1339 (m), 1322 (s), 1299 (vs), 1266 (m), 1242 (m), 1221 (s), 1211 (s), 1198 (s), 1173 (m), 1146 (w), 1135 (w), 1081 (w), 972 (w), 962 (w), 952 (w), 931 (m), 907 (w), 857 (m), 817 (m), 756 (vs), 737 (vs), 710 (vs), 673 (m), 646 (w), 633 (w), 612 (w), 572 (w), 458 (w), 428 (w), 401 (w), 382 (s) cm–1 . FAB-MS: m /z (%) = 665 (43), 664 (100), 662 (42), 661 (31), 660 (46), 659 (85), 658 (30), 648 (31), 647 (67), 530 (73), 219 (83), 191 (33), 163 (31), 161 (32), 159 (30), 154 (41), 149 (32), 147 (61), 136 (41), 131 (38), 119 (34), 107 (37), 105 (43), 97 (38), 95 (53), 91 (71). HRMS-FAB: m /z [M + H]+ calcd for C42 H39 O2 N6 : 659.3129; found: 659.3127.
15a
Gupta AK,
Matulaitis T,
Cordes DB,
Slawin AM. Z,
Samuel ID. W,
Zysman-Colman E.
Can. J. Chem. 2022; 100: 224
15b
Sun D,
Saxena R,
Fan X,
Athanasopoulos S,
Duda E,
Zhang M,
Bagnich S,
Zhang X,
Zysman-Colman E,
Köhler A.
Adv. Sci. 2022; 9: 2201470
16
Carlson SA,
Hercules DM.
J. Am. Chem. Soc. 1971; 93: 5611