CC BY-NC-ND 4.0 · Synlett 2025; 36(04): 383-388 DOI: 10.1055/a-2339-2832
Electrosynthesis of Quinoxalines via Intermolecular Cyclization/Dehydrogenation of Ketones with o -Phenylenediamines
Yi Tao
b
The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161099, P. R. of China
,
Jiahui Zhang
a
College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
,
Yangyang Hu
a
College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
,
Huiying Liu
a
College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
b
The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161099, P. R. of China
,
Jingwen Sun
a
College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
,
Lei Liu∗
a
College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
› Author Affiliations We are grateful for the financial support provided by the Science and Technology Planning Project of Qiqihar (LSFGG-2023025).
Abstract
In this study, we proposed a novel electrochemical dehydrogenative synthetic method for preparing 2-substituted quinoxalines by intermolecular cyclization of aryl alkyl ketones and o -phenylenediamines. This method gave various quinoxalines in yields ranging from 35% to 71%. This novel protocol employs mild reaction conditions and offers moderate to excellent yields, a wide substrate scope, and broad functional-group compatibility. Furthermore, a late-stage functionalization and the wide substrate scope demonstrated the synthetic utility of this protocol.
Key words
quinoxalines -
electrochemistry -
cyclization -
green chemistry -
dehydrogenation
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2339-2832.
Supporting Information
Publication History
Received: 15 May 2024
Accepted after revision: 29 May 2024
Accepted Manuscript online: 05 June 2024
Article published online: 14 June 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Wang X.-T,
Song J.-L,
Zhong M,
Kang H.-J,
Xie H,
Che T,
Shu B,
Peng D,
Zhang L,
Zhang S.-S.
Eur. J. Org. Chem. 2020; 3635
1b
Debbert SL,
Hintz MJ,
Bell CJ,
Earl KR,
Forsythe GE,
Haberli C,
Keiser J.
Antimicrob. Agents Chemother. 2021; 65: e01370
2
Montana M,
Montero V,
Khoumeri O,
Vanelle P.
Molecules 2021; 26: 4742
3a
Bala Aakash V,
Ramalakshmi N,
Bhuvaneswari S,
Sankari E,
Arunkumar S.
Russ. J. Bioorg. Chem. 2022; 48: 657
3b
Alavi S,
Mosslemin MH,
Mohebat R,
Massah AR.
Res. Chem. Intermed. 2017; 43: 4549
3c
Liu X.-H,
Yu W,
Min LJ,
Wedge DE,
Tan CX,
Weng JQ,
Wu HK,
Cantrell CL,
Bajsa Hirschel J,
Hua XW,
Duke SO.
J. Agric. Food Chem. 2020; 68: 7324
3d
Tang X,
Zhou Q,
Zhan W,
Hu D,
Zhou R,
Sun N,
Chen S,
Wu W,
Xue W.
RSC Adv. 2022; 12: 2399
3e
Patel SB,
Patel BD,
Pannecouque C,
Bhatt HG.
Eur. J. Med. Chem. 2016; 117: 230
4a
Uehara T,
Minoshima Y,
Sagane K,
Sugi NH,
Mitsuhashi KO,
Yamamoto N,
Kamiyama H,
Takahashi K,
Kotake Y,
Uesugi M,
Yokoi A,
Inoue A,
Yoshida T,
Mabuchi M,
Tanaka A,
Owa T.
Nat. Chem. Biol. 2017; 13: 675
4b
Li Y,
Lou Z,
Li H,
Yang H,
Zhao Y,
Fu H.
Angew. Chem. Int. Ed. 2020; 59: 3671
4c
Han T,
Goralski M,
Gaskill N,
Capota E,
Kim J,
Ting TC,
Xie Y,
Williams NS,
Nijhawan D.
Science 2017; 356: 397
4d
Gulevskaya AV.
Eur. J. Org. Chem. 2016; 4207
5a
Kanazawa H,
Shigemoto R,
Kawasaki Y,
Oinuma KI,
Nakamura A,
Masuo S,
Takaya N.
J. Bacteriol. 2018; 200: e00022
5b
Schwechheimer SK,
Park EY,
Revuelta JL,
Becker J,
Wittmann C.
Appl. Microbiol. Biotechnol. 2016; 100: 2107
5c
Fennessy JR,
Cornett KM. D,
Burns J,
Menezes MP.
J. Peripher. Nerv. Syst. 2023; 28: 308
6a
Pandit RP,
Kim S.-H,
Lee Y.-R.
Adv. Synth. Catal. 2016; 358: 3586
6b
Bäumler C,
Kemper R.
Chem. Eur. J. 2018; 24: 8989
7
Zhang R,
Qin Y,
Zhang L,
Luo S.
Org. Lett. 2017; 19: 5629
8
Yang H.-R,
Hu Z.-Y,
Li X.-C,
Wu L,
Guo X.-X.
Org. Lett. 2022; 24: 8392
9
Nguyen LA,
Nguyen TT. T,
Ngo QA,
Nguyen TB.
Adv. Synth. Catal. 2022; 364: 2748
10
Keivanloo A,
Abbaspour S,
Bakherad M,
Notash B.
ChemistrySelect 2019; 4: 1366
11a
Keivanloo A,
Lashkari S,
Bakherad M,
Fakharian M,
Abbaspour S.
Mol. Diversity 2021; 25: 981
11b
Keivanloo A,
Soozani A,
Bakherad M,
Mirzaee M,
Rudbari HA,
Bruno G.
Tetrahedron 2017; 73: 1633
11c
Keivanloo A,
Kazemi SS,
Nasr-Isfahani H,
Bamoniri A.
Tetrahedron 2016; 72: 6536
12a
Matthews MA.
Pure Appl. Chem. 2001; 73: 1305
12b
Horn EJ,
Rosen BR,
Baran PS.
ACS Cent. Sci. 2016; 2: 302
12c
Wu T,
Moeller KD.
Angew. Chem. Int. Ed. 2021; 60: 12883
13
Liang S,
Zeng C.-C,
Tian H.-Y,
Sun B.-G,
Luo X.-G,
Ren F.-Z.
J. Org. Chem. 2016; 81: 11565
14a
Liu L,
Xu Z,
Lin J,
Zhang Z,
Wu Y,
Yang P,
Hang Y,
Song D,
Zhong W,
Ling F.
Adv. Synth. Catal. 2023; 365: 2248
14b
Liu L,
Zhang W,
Xu C,
He J,
Xu Z,
Yang Z,
Ling F,
Zhong W.
Adv. Synth. Catal. 2022; 364: 1319
15a
Kumar Shahi C,
Pradhan S,
Bhattacharyya A,
Kumar R,
Ghorai MK.
Eur. J. Org. Chem. 2017; 3487
15b
Kumar S,
Saunthwal RK,
Mujahid M,
Aggarwal T,
Verma AK.
J. Org. Chem. 2016; 81: 9912
16
Quinoxalines 3aa–be; General Procedure
A tube was charged with the appropriate ketone 1 (0.5 mmol, 1.0 equiv), amine 2 (0.75 mmol, 1.5 equiv), KI (0.25 mmol, 0.5 equiv), H2 C2 O4 ·2 H2 O (0.5 mmol, 1.0 equiv),
n
Bu4 NI (0.25 mmol, 0.5 equiv), and DMA (6 mL). The tube was then equipped with a graphite felt anode and a Pt foam cathode, and its contents were subjected to constant-current (15.0 mA) electrolysis at 100 °C for 24 h. After complete consumption of the starting material, the mixture was extracted with EtOAc, and the organic layer was dried (Na2 SO4 ), filtered, and concentrated. The residue was purified by column chromatography (silica gel, EtOAc–hexane).
2-Phenylquinoxaline (3aa)17a
Yellow solid; yield: 70 mg (68%). 1 H NMR (600 MHz, CDCl3 ): δ = 9.33 (s, 1 H), 8.22–8.19 (m, 2 H), 8.15 (ddd, J = 22.2, 8.4, 1.8 Hz, 2 H), 7.77 (dddd, J = 23.4, 8.4, 7.2, 1.2 Hz, 2 H), 7.59–7.52 (m, 3 H). 13 C NMR (150 MHz, CDCl3 ): δ = 152.2, 143.7, 142.7, 141.8, 137.1, 130.7, 130.6, 130.0, 129.9, 129.5, 129.4, 127.9.
2-(4-Bromophenyl)quinoxaline (3ak)17b
Yellow solid; yield: 63 mg (44%). 1 H NMR (600 MHz, CDCl3 ): δ = 9.27 (s, 1 H), 8.11 (ddd, J = 8.4, 6.4, 2.0 Hz, 2 H), 8.08–8.04 (m, 2 H), 7.80–7.72 (m, 2 H), 7.70–7.65 (m, 2 H). 13 C NMR (150 MHz, CDCl3 ): δ = 150.4, 142.6, 142.0, 141.5, 135.4, 132.1, 130.3, 129.6, 129.4, 129.0, 128.8, 124.8.
17a
Nguyen T,
Ermolenko L,
Al-Mourabit A.
Synthesis 2015; 47: 1741
17b
Palem JD,
Alugubelli GR,
Bantu R,
Nagarapu L,
Polepalli S,
Jain SN,
Bathini R,
Manga V.
Bioorg. Med. Chem. Lett. 2016; 26: 3014