CC BY-NC-ND 4.0 · Synlett
DOI: 10.1055/a-2339-2832
letter

Electrosynthesis of Quinoxalines via Intermolecular Cyclization/Dehydrogenation of Ketones with o-Phenylenediamines

Yi Tao
b   The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161099, P. R. of China
,
Jiahui Zhang
a   College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
,
Yangyang Hu
a   College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
,
Huiying Liu
a   College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
b   The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161099, P. R. of China
,
Jingwen Sun
a   College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
,
Lei Liu
a   College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, P. R. of China
› Author Affiliations
We are grateful for the financial support provided by the Science and Technology Planning Project of Qiqihar (LSFGG-2023025).


Abstract

In this study, we proposed a novel electrochemical dehydrogenative synthetic method for preparing 2-substituted quinoxalines by intermolecular cyclization of aryl alkyl ketones and o-phenylenediamines. This method gave various quinoxalines in yields ranging from 35% to 71%. This novel protocol employs mild reaction conditions and offers moderate to excellent yields, a wide substrate scope, and broad functional-group compatibility. Furthermore, a late-stage functionalization and the wide substrate scope demonstrated the synthetic utility of this protocol.

Supporting Information



Publication History

Received: 15 May 2024

Accepted after revision: 29 May 2024

Accepted Manuscript online:
05 June 2024

Article published online:
14 June 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Wang X.-T, Song J.-L, Zhong M, Kang H.-J, Xie H, Che T, Shu B, Peng D, Zhang L, Zhang S.-S. Eur. J. Org. Chem. 2020; 3635
    • 1b Debbert SL, Hintz MJ, Bell CJ, Earl KR, Forsythe GE, Haberli C, Keiser J. Antimicrob. Agents Chemother. 2021; 65: e01370
  • 2 Montana M, Montero V, Khoumeri O, Vanelle P. Molecules 2021; 26: 4742
    • 3a Bala Aakash V, Ramalakshmi N, Bhuvaneswari S, Sankari E, Arunkumar S. Russ. J. Bioorg. Chem. 2022; 48: 657
    • 3b Alavi S, Mosslemin MH, Mohebat R, Massah AR. Res. Chem. Intermed. 2017; 43: 4549
    • 3c Liu X.-H, Yu W, Min LJ, Wedge DE, Tan CX, Weng JQ, Wu HK, Cantrell CL, Bajsa Hirschel J, Hua XW, Duke SO. J. Agric. Food Chem. 2020; 68: 7324
    • 3d Tang X, Zhou Q, Zhan W, Hu D, Zhou R, Sun N, Chen S, Wu W, Xue W. RSC Adv. 2022; 12: 2399
    • 3e Patel SB, Patel BD, Pannecouque C, Bhatt HG. Eur. J. Med. Chem. 2016; 117: 230
    • 4a Uehara T, Minoshima Y, Sagane K, Sugi NH, Mitsuhashi KO, Yamamoto N, Kamiyama H, Takahashi K, Kotake Y, Uesugi M, Yokoi A, Inoue A, Yoshida T, Mabuchi M, Tanaka A, Owa T. Nat. Chem. Biol. 2017; 13: 675
    • 4b Li Y, Lou Z, Li H, Yang H, Zhao Y, Fu H. Angew. Chem. Int. Ed. 2020; 59: 3671
    • 4c Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, Xie Y, Williams NS, Nijhawan D. Science 2017; 356: 397
    • 4d Gulevskaya AV. Eur. J. Org. Chem. 2016; 4207
    • 5a Kanazawa H, Shigemoto R, Kawasaki Y, Oinuma KI, Nakamura A, Masuo S, Takaya N. J. Bacteriol. 2018; 200: e00022
    • 5b Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C. Appl. Microbiol. Biotechnol. 2016; 100: 2107
    • 5c Fennessy JR, Cornett KM. D, Burns J, Menezes MP. J. Peripher. Nerv. Syst. 2023; 28: 308
    • 6a Pandit RP, Kim S.-H, Lee Y.-R. Adv. Synth. Catal. 2016; 358: 3586
    • 6b Bäumler C, Kemper R. Chem. Eur. J. 2018; 24: 8989
  • 7 Zhang R, Qin Y, Zhang L, Luo S. Org. Lett. 2017; 19: 5629
  • 8 Yang H.-R, Hu Z.-Y, Li X.-C, Wu L, Guo X.-X. Org. Lett. 2022; 24: 8392
  • 9 Nguyen LA, Nguyen TT. T, Ngo QA, Nguyen TB. Adv. Synth. Catal. 2022; 364: 2748
  • 10 Keivanloo A, Abbaspour S, Bakherad M, Notash B. ChemistrySelect 2019; 4: 1366
    • 11a Keivanloo A, Lashkari S, Bakherad M, Fakharian M, Abbaspour S. Mol. Diversity 2021; 25: 981
    • 11b Keivanloo A, Soozani A, Bakherad M, Mirzaee M, Rudbari HA, Bruno G. Tetrahedron 2017; 73: 1633
    • 11c Keivanloo A, Kazemi SS, Nasr-Isfahani H, Bamoniri A. Tetrahedron 2016; 72: 6536
    • 12a Matthews MA. Pure Appl. Chem. 2001; 73: 1305
    • 12b Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 12c Wu T, Moeller KD. Angew. Chem. Int. Ed. 2021; 60: 12883
  • 13 Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F.-Z. J. Org. Chem. 2016; 81: 11565
    • 14a Liu L, Xu Z, Lin J, Zhang Z, Wu Y, Yang P, Hang Y, Song D, Zhong W, Ling F. Adv. Synth. Catal. 2023; 365: 2248
    • 14b Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Adv. Synth. Catal. 2022; 364: 1319
    • 15a Kumar Shahi C, Pradhan S, Bhattacharyya A, Kumar R, Ghorai MK. Eur. J. Org. Chem. 2017; 3487
    • 15b Kumar S, Saunthwal RK, Mujahid M, Aggarwal T, Verma AK. J. Org. Chem. 2016; 81: 9912
  • 16 Quinoxalines 3aa–be; General Procedure A tube was charged with the appropriate ketone 1 (0.5 mmol, 1.0 equiv), amine 2 (0.75 mmol, 1.5 equiv), KI (0.25 mmol, 0.5 equiv), H2C2O4·2 H2O (0.5 mmol, 1.0 equiv), n Bu4NI (0.25 mmol, 0.5 equiv), and DMA (6 mL). The tube was then equipped with a graphite felt anode and a Pt foam cathode, and its contents were subjected to constant-current (15.0 mA) electrolysis at 100 °C for 24 h. After complete consumption of the starting material, the mixture was extracted with EtOAc, and the organic layer was dried (Na2SO4), filtered, and concentrated. The residue was purified by column chromatography (silica gel, EtOAc–hexane). 2-Phenylquinoxaline (3aa)17a Yellow solid; yield: 70 mg (68%). 1H NMR (600 MHz, CDCl3): δ = 9.33 (s, 1 H), 8.22–8.19 (m, 2 H), 8.15 (ddd, J = 22.2, 8.4, 1.8 Hz, 2 H), 7.77 (dddd, J = 23.4, 8.4, 7.2, 1.2 Hz, 2 H), 7.59–7.52 (m, 3 H). 13C NMR (150 MHz, CDCl3): δ = 152.2, 143.7, 142.7, 141.8, 137.1, 130.7, 130.6, 130.0, 129.9, 129.5, 129.4, 127.9. 2-(4-Bromophenyl)quinoxaline (3ak)17b Yellow solid; yield: 63 mg (44%). 1H NMR (600 MHz, CDCl3): δ = 9.27 (s, 1 H), 8.11 (ddd, J = 8.4, 6.4, 2.0 Hz, 2 H), 8.08–8.04 (m, 2 H), 7.80–7.72 (m, 2 H), 7.70–7.65 (m, 2 H). 13C NMR (150 MHz, CDCl3): δ = 150.4, 142.6, 142.0, 141.5, 135.4, 132.1, 130.3, 129.6, 129.4, 129.0, 128.8, 124.8.
    • 17a Nguyen T, Ermolenko L, Al-Mourabit A. Synthesis 2015; 47: 1741
    • 17b Palem JD, Alugubelli GR, Bantu R, Nagarapu L, Polepalli S, Jain SN, Bathini R, Manga V. Bioorg. Med. Chem. Lett. 2016; 26: 3014