Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(05): 512-516
DOI: 10.1055/a-2370-7112
DOI: 10.1055/a-2370-7112
letter
Chemo- and Regioselective Demethylation of 2-Bromo-α-resorcylic Acid Derivatives Using Alkylthiolate Salts
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC): RGPIN-2023-04835 (NV), RGPIN-2024-05005 (SC). This work was also funded by the Université du Québec à Rimouski (UQAR, Fonds institutionnel de recherche and Bureau du doyen de la recherche), PROTEO, and Université Laval. Tommy Fraser thanks Fonds de recherche du Québec – Nature et technologies (FRQNT), the Natural Sciences and Engineering Research Council of Canada (NSERC), PROTEO, and Université Laval for postgraduate scholarships. Zakiel Harbour thanks NSERC and PROTEO for an undergraduate student research internships award.

Abstract
We report here the chemo- and regioselective demethylation of 2-bromo-3,5-dimethoxy-α-resorcylic acid esters by a thiolate nucleophilic displacement reaction. Optimized conditions facilitate yields up to 93% for o-bromo-selective demethylation of diverse ester derivatives of dimethoxy 2-bromo-α-resorcylic acid. Our results highlight a new, efficient, and reliable demethylation reagent, as well as a useful steric bias directing strategy.
Key words
demethylation - thiolates - chemoselectivity - regioselectivity - α-resorcylic acid derivativesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2370-7112.
- Supporting Information
Publication History
Received: 20 March 2024
Accepted after revision: 22 July 2024
Accepted Manuscript online:
22 July 2024
Article published online:
14 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Carpentier C, Queiroz EF, Marcourt L, Wolfender J.-L, Azelmat J, Grenier D, Boudreau S, Voyer N. J. Nat. Prod. 2017; 80: 210
- 2 Bernard AM, Ghiani MR, Piras PP, Rivoldini A. Synthesis 1989; 1989: 287
- 3 Fang Z, Zhou G.-C, Zheng S.-L, He G.-L, Li J.-L, He L, Bei D. J. Mol. Catal. A: Chem. 2007; 274: 16
- 4 Yadav JS, Subba Reddy BV, Madan C, Riaz Hashim S. Chem. Lett. 2000; 29: 738
- 5 Bao K, Fan A, Dai Y, Zhang L, Zhang W, Cheng M, Yao X. Org. Biomol. Chem. 2009; 7: 5084
- 6 Dua Z.-T, Lua J, Yua H.-R, Xua Y, Lib A.-P. J. Chem. Res. 2010; 34: 222
- 7 Sang D, Yue H, Zhao Z, Yang P, Tian J. J. Org. Chem. 2020; 85: 6429
- 8 Gillies I, Loft MS. Synth. Commun. 1988; 18: 191
- 9 Koutek B, Setínek K. Collect. Czech. Chem. Commun. 1968; 33: 866
- 10 Feutrill GI, Mirrington RN. Tetrahedron Lett. 1970; 11: 1327
- 11 Mirrington RN, Feutrill GI. Org. Synth. 1973; 53: 90
- 12 Hansson C, Wickberg B. Synthesis 1976; 191
- 13 Lai K, Ghosh S, Salomon RG. J. Org. Chem. 1987; 52: 1072
- 14 Dodge JA, Stocksdale MG, Fahey KJ, Jones CD. J. Org. Chem. 1995; 60: 739
- 15 Nayak MK, Chakraborti AK. Tetrahedron Lett. 1997; 38: 8749
- 16 Chakraborti AK, Sharma L, Nayak MK. J. Org. Chem. 2002; 67: 6406
- 17 Chakraborti AK, Nayak MK, Sharma L. J. Org. Chem. 2002; 67: 1776
- 18 Chakraborti AK, Sharma L, Nayak MK. J. Org. Chem. 2002; 67: 2541
- 19 Magano J, Chen MH, Clark JD, Nussbaumer T. J. Org. Chem. 2006; 71: 7103
- 20 Gavande NS, Kundu S, Badgujar NS, Kaur G, Chakraborti AK. Tetrahedron 2006; 62: 4201
- 21 Chae J. Arch. Pharmacal Res. 2008; 31: 305
- 22 Cvengroš J, Neufeind S, Becker A, Schmalz H.-G. Synlett 2008; 2008: 1993
- 23 Shigeno M, Hayashi K, Korenaga T, Nozawa-Kumada K, Kondo Y. Org. Chem. Front. 2022; 9: 3656
- 24 Frey LF, Marcantonio KM, Chen C.-y, Wallace DJ, Murry JA, Tan L, Chen W, Dolling UH, Grabowski EJ. J. Tetrahedron 2003; 59: 6363
- 25 Jones K, Roset X, Rossiter S, Whitfield P. Org. Biomol. Chem. 2003; 1: 4380
- 26 Sztaricskai F, Harris CM, Neszmélyi A, Harris TM. J. Am. Chem. Soc. 1980; 102: 7093
- 27 Hamlin TA, Swart M, Bickelhaupt FM. ChemPhysChem 2018; 19: 1315
- 28 Furrer J. Concepts Magn. Reson., Part A 2012; 40: 101
- 29 Parker AJ. Chem. Rev. 1969; 69: 32
- 30 General Demethylation Procedure for 1b–d Potassium hydride (361.0 mg, 9.0 mmol, 3.0 equiv.) was suspended in dry NMP (10 mL), in a two-neck round-bottom flask equipped with a stir bar and an addition funnel, under nitrogen atmosphere. The reaction flask was cooled down to 0 °C. A solution of t-BuSH (1.0 mL, 9.0 mmol, 3.0 equiv.) in NMP (5 mL) was added to the addition funnel. This solution was then added dropwise to the reaction mixture over 10 min. After the addition, the ice bath was removed, and the mixture was left to stir for 10 min. A solution of a 2-bromo-3,5-dimethoxy-α-resorcylic ester 1b–d (3.0 mmol, 1.0 equiv.) in NMP (5 mL) was then added in one portion, and the reaction mixture was left to stir for 3 h at 65 °C. The reaction mixture was cooled down before 50 mL of HCl 1 N were added. The crude reaction mixture was extracted three times with EtOAc (75 mL). The organic layers were combined, washed four times with HCl 1 N (100 mL), dried over MgSO4, and concentrated in vacuo. The crude material was purified by silica gel chromatography. Ethyl 2-Bromo-3-hydroxy-5-methoxybenzoate (2b) Colorless oil; yield 67% (2.00 mmol, 549.0 mg); Rf = 0.49 (1:1 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3): δ = 6.97 (1 H, d, J = 3.1 Hz), 6.73 (1 H, d, J = 2.9 Hz), 6.08 (1 H, s), 4.38 (2 H, q, J = 7.1 Hz), 3.79 (3 H, s), 1.39 (3 H, t, J = 7.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 165.9, 159.8, 154.0, 132.9, 109.9, 104.6, 100.7, 61.9, 55.8, 14.3. IR (ATR): νmax = 3412, 2980, 2937, 2847, 1724, 1707, 1585, 1427, 1369, 1338, 1227, 1144, 1068, 1018, 1018 cm–1. HRMS (ESI-TOF); m/z calcd for C10H11O4Br [M + H]+: 274.9913; found: 274.9910. Isopropyl 2-Bromo-3-hydroxy-5-methoxybenzoate (2c) Colorless oil; yield 92% (2.76 mmol, 799.0 mg); Rf = 0.56 (1:1 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3): δ = 6.90 (1 H, d, J = 2.9 Hz), 6.69 (1 H, d, J = 3.1 Hz), 6.20 (1 H, br), 5.24 (1 H, hept, J = 5.8 Hz), 3.77 (3 H, s), 1.36 (6 H, d, J = 6.4 Hz). 13C NMR (125 MHz, CDCl3): δ = 165.6, 159.7, 154.0, 133.5, 109.6, 104.3, 100.4, 69.8, 55.7, 21.9. IR (ATR): νmax = 3418, 2982, 2937, 2845, 1701, 1585, 1427, 1360, 1232, 1146, 1103, 997, 829 cm–1. HRMS (ESI-TOF): m/z calcd for C11H13O4Br [M + H]+: 289.0070; found: 289.0057 tert-Butyl 2-Bromo-3-hydroxy-5-methoxybenzoate (2d) Yellowish oil; yield 93% (2.79 mmol, 845.8 mg); Rf = 0.55 (1:1 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3): δ = 6.88 (1 H, d, J = 2.9 Hz), 6.70 (1 H, d, J = 3.1 Hz), 3.79 (3 H, s), 1.60 (9 H, s). 13C NMR (125 MHz, CDCl3): δ = 165.2, 159.6, 153.8, 134.7, 109.4, 103.8, 100.1, 82.9, 55.7, 28.1. IR (ATR): νmax = 3398, 2980, 2937, 2845, 1724, 1703, 1585, 1367, 1348, 1242, 1142, 1020, 997, 841, 779 cm–1. HRMS (ESI-TOF): m/z calcd for C12H15O4Br [M + NH4]+: 320.0492; found: 320.0482.