Subscribe to RSS
DOI: 10.1055/a-2373-0471
Reductive Electrophilic Cross-Coupling for Constructing C(sp3)–C(sp3) Bonds
Financial support from the National Key Research and Development Program of China (2022YFA1503200), the National Natural Science Foundation of China (Grant No. 22371149, 22188101), the Fundamental Research Funds for the Central Universities (No. 63224098), the Frontiers Science Center for New Organic Matter, Nankai University (Grant No. 63181206) and Nankai University are gratefully acknowledged. We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support.
Abstract
The C(sp3)–C(sp3) bond is one of the most prevalent motifs in organic compounds and holds significant importance in organic synthesis. The utilization of two alkyl electrophiles for cross-coupling stands as a vital strategy in building C(sp3)–C(sp3) bonds. Nowadays, synthetic electrochemistry is undergoing rapid development owing to its exceptional attributes not only in terms of green and economic properties by reducing the large amount of traditional chemical reductants, but also by its capacity to generate highly reactive radical intermediates under mild conditions, thereby opening up new reaction pathways and presenting novel opportunities to constructing C(sp3)–C(sp3) bonds. This article aims to comprehensively delineate the historical development of traditional electrophilic reagents in constructing C(sp3)–C(sp3) bonds, while also delving into the advantages of electrochemical electrophilic cross-coupling in this domain.
1 Introduction
2 Case Studies of Nickel-Catalyzed and Photochemical Alkyl Halide Cross-Coupling
3 Case Studies of Electrocatalyzed Approaches for the Construction of C(sp3)–C(sp3) Bonds Using Electrophilic Reagents
4 Nickel-Electrocatalyzed C(sp3)–C(sp3) Cross-Coupling of Unactivated Alkyl Halides
5 Conclusion
Key words
electrophilic reagents - cross-coupling - organic electrosynthesis - C(sp3)–C(sp3) bonds - nickel catalysisPublication History
Received: 24 June 2024
Accepted after revision: 24 July 2024
Accepted Manuscript online:
25 July 2024
Article published online:
19 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
- 1b Negishi E, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
- 1c King AO, Okukado N, Negishi E.-I. J. Chem. Soc., Chem. Commun. 1977; 683
- 1d Heck RF. Acc. Chem. Res. 1979; 12: 146
- 1e Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1f Kanchana US, Diana EJ, Mathew TV, Anilkumar G. Appl. Organomet. Chem. 2020; 34: e5983
- 2a Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
- 2b Teng SH, Tessensohn ME, Webster RD, Zhou J. ACS Catal. 2018; 8: 7439
- 2c Zhao C, Li Y, Dong Y, Li M, Xia D, Gao S, Zhang Q, Guan W, Fu J. Nat. Commun. 2022; 13: 6297
- 2d Chen LM, Reisman SE. Acc. Chem. Res. 2024; 57: 751
- 3a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 3b Lovering F. Med. Chem. Commun. 2013; 4: 515
- 3c Tabassum S, Zahoor AF, Ahmad S, Noreen R, Khan SG, Ahmad H. Mol. Diversity 2022; 26: 647
- 4a Luh T.-Y, Leung M.-k, Wong K.-T. Chem. Rev. 2000; 100: 3187
- 4b Jensen AE, Knochel P. J. Org. Chem. 2002; 67: 79
- 4c Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
- 4d Zhou J, Fu GC. J. Am. Chem. Soc. 2003; 125: 14726
- 4e Vechorkin O, Hu X. Angew. Chem. Int. Ed. 2009; 48: 2937
- 4f Choi J, Fu GC. Science 2017; 356: 7230
- 4g Korch KM, Watson DA. Chem. Rev. 2019; 119: 8192
- 4h Guérinot A, Cossy J. Acc. Chem. Res. 2020; 53: 1351
- 4i Kranthikumar R. Organometallics 2022; 41: 667
- 5a Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 5b Wei DJ. Acc. Chem. Res. 2015; 48: 1767
- 5c Sakai HA, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6185
- 5d Gong Y, Hu J, Qiu C, Gong H. Acc. Chem. Res. 2024; 57: 1149
- 6a Utley J. Chem. Soc. Rev. 1997; 26: 157
- 6b Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
- 6c Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 6d Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 6e Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
- 6f Wang H, Gao X, Abdelilah ZT, Lei A. Chem. Rev. 2019; 119: 6769
- 6g Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
- 6h Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
- 6i Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
- 6j Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; 53: 300
- 6k Novaes LF. T, Liu J.-J, Shen Y.-F, Lu L.-X, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
- 6l Qiu Y, Zhu C, Stangier M, Struwe J, Ackermann L. CCS Chem. 2020; 2: 1529
- 6m Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 6n Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
- 7a Jiao K, Liu D, Ma H, Qiu H, Fang P, Mei T. Angew. Chem. Int. Ed. 2020; 59: 6520
- 7b Ang NW. J, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
- 7c Sun G, Zhang W, Liao LL, Nie ZH, Wu JG, Zhang Z, Yu DG. Nat. Commun. 2021; 12: 7086
- 7d Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. J. Am. Chem. Soc. 2021; 143: 3536
- 7e Li P, Guo C, Wang S, Ma D, Feng T, Wang Y, Qiu Y. Nat. Commun. 2022; 13: 3774
- 7f Hamby TB, LaLama MJ, Sevov CS. Science 2022; 376: 410
- 7g Hu X, Cheng-Sánchez I, Guesta-Galisteo S, Nevado C. J. Am. Chem. Soc. 2023; 145: 6270
- 7h Liu Y, Li P, Wang Y, Qiu Y. Angew. Chem. Int. Ed. 2023; e202306679
- 8 Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
- 9 Xu H, Zhao C, Qian Q, Deng W, Guo H. Chem. Sci. 2013; 4: 4022
- 10a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 10b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 10c Beil SB, Chen TQ, Intermaggio NE, MacMillan DW. C. Acc. Chem. Res. 2022; 55: 3481
- 10d Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 10e Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017
- 11 Smith RT, Zhang X, RincÓn JA, Agejas J, Mateos C, Barberis M, Garcia-Cerrada S, Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
- 12a Olah GA, Balaram Gupta BG, Malhotra R, Narang SC. J. Org. Chem. 1980; 45: 1638
- 12b Iranpoor N, Firouzabadi H, Jamalian A, Kazemi F. Tetrahedron 2005; 61: 5699
- 12c Ranu BC, Jana R. Eur. J. Org. Chem. 2005; 755
- 12d Dai C, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2011; 3: 140
- 13 Chen RZ, Intermaggio NE, Xie JX, Rossi-Ashton JA, Guold CA, Martin RT, Alcazar J, MacMillan DW. C. Science 2024; 383: 1350
- 14a Ang NW. J, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
- 14b Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J. Am. Chem. Soc. 2021; 143: 12985
- 14c Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue XS, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202210201
- 14d Wang YZ, Wang ZH, Eshel IL, Sun B, Liu D, Gu YC, Milo A, Mei TS. Nat. Commun. 2023; 14: 2322
- 15 Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 16 Schäfer HJ. Chem. Phys. Lipids 1979; 24: 321
- 17 Zhang B, Gao Y, Hioki Y, Oderinde MS, Qiao JX, Rodriguez KX, Zhang HJ, Kawamata Y, Baran PS. Nature 2022; 606: 313
- 18a Claraz A, Masson G. ACS Org. Inorg. Au 2022; 2: 126
- 18b Wang Y, Sun B, Zhu X. -Y, Gu Y. -C, Ma C, Mei T.-S. J. Am. Chem. Soc. 2023; 145: 23910
- 18c Li P, Kou G, Feng T, Wang M, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202311941
- 18d Ibrahim MY. S, Cumming GR, Vega RG. J. Am. Chem. Soc. 2023; 145: 17023
- 18e Zhang B, He J, Gao Y, Levy L, Oderinde MS, Palkowitz MD, Murali DharT. G, Mandler MD, Collins MR, Schmitt DC, Bolduc PN, Chen T, Clementson S, Petersen NN, Laudadio G, Bi C, Kawamata Y, Baran PS. Nature 2023; 623: 745
- 19 Li P, Zhu Z, Guo C, Kou G, Wang S, Xie P, Ma D, Feng T, Wang Y, Qiu Y. Nat. Catal. 2024; 7: 412
- 20a Martinho Simoes JA, Beauchamp JL. Chem. Rev. 1990; 90: 629
- 20b Liu W, Lavagnino MN, Gould CA, Alcazar J, MacMillan DW. C. Science 2021; 374: 1258
- 20c Kong L, Gan X.-C, Lovett VA. P, Shenvi RA. J. Am. Chem. Soc. 2024; 146: 2351
- 20d Wang JZ, Lyon WL, MacMillan DW. C. Nature 2024; 628: 104
For selected reviews, see: