Synlett
DOI: 10.1055/a-2406-3797
synpacts

Asymmetric Alkyl-Alkyl Cross-Coupling Enabled by Ni-Catalyzed Cross-Hydrodimerization of Enamides with Unactivated Alkenes

Peng-Fei Yang
,
Han-Tong Zhao
,
Wei Shu
Financial support from the National Natural Science Foundation of China (22371115, 22171127), The Pearl River Talent Recruitment Program (2019QN01Y261), the Guangdong Provincial Key Laboratory of Catalysis (no. 2020B121201002), and the Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20220530114606013, JCYJ20230807093522044) is sincerely acknowledged.


Abstract

Saturated stereogenic centers containing C(sp3)–C(sp3) bonds comprise a major portion of organic molecules. Over the past decades, transition-metal-catalyzed asymmetric C(sp3)–C(sp3) cross-coupling has evolved into an efficient strategy for constructing such stereogenic centers. However, reaction modes to build asymmetric C(sp3)–C(sp3) bonds remain limited. Herein, a nickel-catalyzed enantioselective cross-hydrodimerization between distinct alkenes to enable the enantioselective construction of alkyl–alkyl bonds has been developed. In this reaction mode, N-acyl enamines (enamides) and unactivated alkenes undergo oxidative enantioselective cross-hydrodimerization with excellent levels of chemo- and head-to-tail regioselectivity to give enantioenriched N-acyl α-branched amines by forging the C(sp3)–C(sp3) bond with control of the enantioselectivity. The presence of both reducing and oxidizing reagents in the reaction allows the use of alkenes as sole precursors to forge enantioselective C(sp3)–C(sp3) bonds, representing a new reaction mode for asymmetric alkyl–alkyl cross-coupling. The asymmetric cross-hydrodimerization between distinct alkenes provides a new strategy for constructing saturated stereogenic centers containing C(sp3)–C(sp3) bonds.



Publication History

Received: 07 August 2024

Accepted after revision: 28 August 2024

Accepted Manuscript online:
28 August 2024

Article published online:
26 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Carreira EM, Yamamoto H. Comprehensive Chirality. Elsevier; Amsterdam: 2012
    • 1b Anthonsen T. Chiral Drugs: Chemistry and Biological Action. Wiley; Weinheim: 2011
    • 1c Geist E, Kirschning A, Schmidt T. Nat. Prod. Rep. 2014; 31: 441
    • 2a Verendel JJ, Pàmies O, Diéguze M, Andersson PG. Chem. Rev. 2014; 114: 2130
    • 2b Kraft S, Ryan K, Kargbo RB. J. Am. Chem. Soc. 2017; 139: 11630
    • 2c Carbé A, Verdaguer X, Riera A. Chem. Rev. 2022; 122: 269
    • 4a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 4b Choi J, Fu GC. Science 2017; 356: eaaf7230
    • 4c Fu GC. ACS Cent. Sci. 2017; 3: 692
    • 4d Kranthikumar R. Organometallics 2022; 41: 667
    • 4e Yang P.-F, Shu W. Chem Catal. 2023; 3: 100508
    • 4f Zhang Z, Bera S, Fan C, Hu X. J. Am. Chem. Soc. 2022; 144: 7015
    • 4g Wang Y, He Y, Zhu S. Acc. Chem. Res. 2022; 55: 3519
    • 4h Wang XX, Lu X, Li Y, Wang J.-W, Fu Y. Sci. China: Chem. 2022; 63: 1586
    • 5a Schwarzwalder GM, Matier CD, Fu GC. Angew. Chem. Int. Ed. 2019; 58: 3571
    • 5b Tong X, Schneck F, Fu GC. J. Am. Chem. Soc. 2022; 144: 14856
    • 5c Huo HH, Gorsline BJ, Fu GC. Science 2020; 367: 559
    • 5d Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265
    • 5e Zultanski SL, Fu GC. J. Am. Chem. Soc. 2011; 133: 15362
    • 5f Wilsily A, Tramutola F, Owston NA, Fu GC. J. Am. Chem. Soc. 2012; 134: 5794
    • 6a Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
    • 6b Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
    • 6c He Y, Chen J, Jiang X, Zhu S. Chin. J. Chem. 2022; 40: 651
    • 6d Sun X.-Y, Yao B.-Y, Xuan B, Xiao L.-J, Zhou Q.-L. Chem Catal. 2022; 2: 3140
    • 6e Green SA, Crossley SW. M, Matos JL. M, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
  • 8 Lu X, Xiao B, Zhang Z, Gong T, Su W, Yi J, Fu Y, Liu L. Nat. Commun. 2016; 7: 11129
  • 9 Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
    • 10a Zhou F, Zhang Y, Xu X, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 1754
    • 10b He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
    • 10c Bera S, Mao R, Hu X. Nat. Chem. 2021; 13: 270
    • 10d Shi L, Xing L.-L, Hu W.-B, Shu W. Angew. Chem. Int. Ed. 2021; 60: 1599
    • 10e Yang P.-F, Liang J.-X, Zhao H.-T, Zhang J.-X, Zeng X.-W, Shu W. ChemRxiv 2021; preprint DOI: 10.26434/chemrxiv.14213588.v1.
    • 10f Yang P.-F, Zhu L, Liang J.-X, Zhao X.-T, Zhang J.-X, Zeng X.-W, Ouyang Q, Shu W. ACS Catal. 2022; 12: 5795
    • 10g Huang Q, Chen Y, Zhou X, Dai L, Lu Y. Angew. Chem. Int. Ed. 2022; 61: e202210560
    • 10h Li Y, Nie W, Chang Z, Wang J.-W, Lu X, Fu Y. Nat. Catal. 2021; 4: 901
    • 11a Zhao W.-T, Zhang J.-X, Chen B.-H, Shu W. Nat. Commun. 2023; 14: 2938
    • 11b Zhao W.-T, Shu W. Sci. Adv. 2023; 9: eadg9898
    • 11c Shu W, Zhao W.-T. CN113105444B, 2022
    • 11d Shu W, Zhao W.-T. CN114805108B, 2023
    • 12a Cheng L, Liu J, Chen Y, Gong H. Nat. Synth. 2023; 2: 364
    • 12b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
    • 12c Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
    • 12d Wang Y, Yin JJ, Li Y, Yuan X, Xiong T, Zhang Q. ACS Catal. 2022; 12: 9611
  • 13 Yang P.-F, Zhao H.-T, Chen X.-Y, Shu W. Nat. Synth. 2024; in press DOI: 10.1038/s44160-024-00609-2.
    • 14a Qian D, Bera S, Hu X. J. Am. Chem. Soc. 2021; 143: 1959
    • 14b Wang J.-W, Li Y, Nie W, Chang Z, Yu Z.-A, Zhao Y.-F, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
    • 14c Wang S, Zhang J.-X, Zhang T.-Y, Meng H, Chen B.-H, Shu W. Nat. Commun. 2021; 12: 2771