Subscribe to RSS
DOI: 10.1055/a-2417-1070
3d-Metal-Catalyzed Single-Electron-Transfer-Induced Conversion of Carboxylic Acids and Their Equivalents
We sincerely thank the Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR) (CSMCRI Project No. MLP 0077, HCP 0049), the Science and Engineering Research Board (SERB) (Grant no. CRG/2022/003868), and the UGC (fellowship to R.D.S.) for financial support.

Abstract
This account describes the latest developments on 3d-metal-catalyzed single-electron-transfer (SET)-induced strategies that use carboxylic acids and their synthetic equivalents as substrates. In general, 3d-metal-promoted SET-mediated transformations of free carboxylic acids proceed readily via the formation of carboxylate radicals, whilst those of carboxylic acid equivalents, bearing an N-donor substituent, proceed via the formation of α-carbo radicals. The advantages of these strategies combine the low-cost of carboxylic acid starting materials and 3d metal catalysts with the possibility of realizing structurally diverse ranges of compounds in an atom- and step-economic manner. Developments primarily achieved by our group and a few by other researchers on this topic are discussed in this account.
1 Introduction
2 Mechanistic Considerations of 3d-Metal-Catalyzed SET-Mediated Transformations
3 Developments Based on SET-Mediated Transformations of Carboxylic Acids
4 Developments Based on SET-Mediated Transformations of Carboxylic Acid Equivalents
5 Conclusion and Outlook
Publication History
Received: 08 August 2024
Accepted after revision: 17 September 2024
Accepted Manuscript online:
17 September 2024
Article published online:
15 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a James CC, de Bruin B, Reek JN. H. Angew. Chem. Int. Ed. 2023; 62: e202306645
- 1b Sasmal PK, Streu CN, Meggers E. Chem. Commun. 2013; 49: 1581
- 1c Valdez CE, Smith QA, Nechay MR, Alexandrova AN. Acc. Chem. Res. 2014; 47: 3110
- 1d Martínez-Calvo M, Mascareñas JL. Coord. Chem. Rev. 2018; 359: 17
- 1e Das A, Hessin C, Ren Y, Murr MD.-E. Chem. Soc. Rev. 2020; 49: 8840
- 2a Himo F, Eriksson LA, Maseras F, Siegbahn PE. M. J. Am. Chem. Soc. 2000; 122: 8031
- 2b Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J.-G, Henrissat B, Walton PH, Davies GJ, Brumer H. Nat. Commun. 2015; 6: 10197
- 2c Crespo A, Martí MA, Roitberg AE, Amzel LM, Estrin DA. J. Am. Chem. Soc. 2009; 131: 4657
- 2d Whittaker JW. Chem. Rev. 2003; 103: 2347
- 3 Cotton FA, Wilkinson G, Murillo CA, Bachmann M. In Advanced Inorganic Chemistry, 6th ed. John Wiley & Sons; New York: 1999
- 4a Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 4b Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 5a Goossen LJ, Deng G, Levy LM. Science 2006; 313: 662
- 5b Baudoin O. Angew. Chem. Int. Ed. 2007; 46: 1373
- 5c Gooßen LJ, Gooßen K, Rodríguez N, Blanchot M, Linder C, Zimmermann B. Pure Appl. Chem. 2008; 80: 1725
- 5d Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
- 5e Gooßen LJ, Collet F, Gooßen K. Isr. J. Chem. 2010; 50: 617
- 5f Hu X.-Q, Liu Z.-K, Hou Y.-X, Gao Y. iScience 2020; 23: 101266
- 6 Rahaman A, Chauhan SS, Bhadra S. Org. Biomol. Chem. 2023; 21: 5691
- 7a Kumar J, Rahaman A, Singh AK, Bhadra S. Chem. Asian J. 2020; 15: 673
- 7b Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Tetrahedron 2021; 98: 132415
- 7c Singh AK, Shinde RD, Kumar J. Synlett 2023; 34: 561
- 8a Li L.-J, Wei Y, Zhao Y.-L, Gao Y, Hu X.-Q. Org. Lett. 2024; 26: 1110 ; and references cited therein
- 8b Dong Y, Xiong N, Rong Z, Zeng R. Org. Lett. 2024; 26: 2381
- 8c Fall A, Magdei M, Savchuk M, Oudeyer S, Beucher H, Brière J.-F. Chem. Commun. 2024; 60: 6316
- 9a Nakada A, Matsumoto T, Chang H.-C. Coord. Chem. Rev. 2022; 473: 214804
- 9b Broere DL. J, Plessius R, van der Vlugt JI. Chem. Soc. Rev. 2015; 44: 6886
- 9c Luca O, Crabtree RH. Chem. Soc. Rev. 2013; 42: 1440
- 10 Lemishko SS, Lemishko AS. J. Phys. Chem. C 2017; 121: 3234
- 11 Fontana F, Minisci F, Claudia M, Barbosa N, Vismara E. J. Org. Chem. 1991; 56: 2866
- 12 Rong G, Mao J, Liu D, Yan H, Zheng Y, Chen J. RSC Adv. 2015; 5: 26461
- 13 Zhu Z, Tang X, Li J, Li X, Wu W, Deng G, Jiang H. Chem. Commun. 2017; 53: 3228
- 14 Rahaman A, Singh AK, Gupta A, Bhadra S. Eur. J. Org. Chem. 2021; 2198
- 15 Rahaman A, Bhadra S. Synlett 2023; 34: 2481
- 16 Mohebali H, Mahjoub AR, Karimi M, Heydari A. Appl. Organomet. Chem. 2019; 33: e4822
- 17 Rahaman A, Shinde RD, Bhadra S. J. Org. Chem. 2023; 88: 1884
- 18a Mihara K, Aoki T, Moriguchi A, Yamamoto H, Maeda M, Tojo N, Yamanaka T, Ohkubo M, Matsuoka N, Seki J, Mutoh S. Drug Dev. Res. 2004; 61: 233
- 18b Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
- 18c Schmitt ML, Hauser AT, Carlino L, Pippel M, Schulz-Fincke J, Metzger E, Willmann D, Yiu T, Barton M, Schüle R, Sippl W, Jung M. J. Med. Chem. 2013; 56: 7334
- 18d Zindo FT, Barber QR, Joubert J, Bergh JJ, Petzer JP, Malan SF. Eur. J. Med. Chem. 2014; 80: 122
- 19 Zhuo J, Zhang Y, Li Z, Li C. ACS Catal. 2020; 10: 3895
- 20 Gupta A, Rahaman A, Bhadra S. Org. Lett. 2019; 21: 6164
- 21 Takemura N, Kuninobu Y, Kanai M. Org. Biomol. Chem. 2014; 12: 2528
- 22 Wu Y, Huang Z, Luo Y, Liu D, Deng Y, Yi H, Lee J.-F, Pao C.-W, Chen J.-L, Lei A. Org. Lett. 2017; 19: 2330
- 23 Fang WK, Chow K. WO2011/008475Al, 2011
- 24 Kumar J, Suresh E, Bhadra S. J. Org. Chem. 2020; 85: 13363
- 25a Guo XK, Zhang L.-B, Wei D, Niu J.-L. Chem. Sci. 2015; 6: 7059
- 25b Cheng Y, Dong W, Wang L, Parthasarathy K, Bolm C. Org. Lett. 2014; 16: 2000
- 26 Shinde RD, Paraskar AR, Kumar J, Ghosh E, Paine TK, Bhadra S. J. Org. Chem. 2024; 89: 9666
- 27a Yoshikai N. ChemCatChem 2015; 7: 732
- 27b Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 27c Mandal R, Garai B, Sundararaju B. ACS Catal. 2022; 12: 3452
For details on the decarboxylative coupling of benzoic acids, see: