Subscribe to RSS
DOI: 10.1055/a-2446-8286
Manganese- and Iron-Catalyzed Carbonylation Reactions: A Personal Account
We thank the financial support from the National Key Research and Development Program of China (2023YFA1507500) and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP).

Abstract
Transition-metal-catalyzed carbonylative transformations have been widely employed to convert CO gas into valuable carbonyl-containing molecules, mainly using noble metals (Pd, Rh, Ir, Ru) and more recently nickel and other catalysts. Although noble-metal catalysts have the advantage of reaction efficiency, their high-cost has led scientists to explore alternative procedures. Also under these backgrounds, we carried out some studies on nonexpensive metal-catalyzed carbonylative transformations. In this Account, we summarize the carbonylation reactions developed in our research group by using manganese and iron catalysis. These carbonylation reactions proceeded either via SET (single-electron transfer) or TET (two-electron transfer) mechanism.
1 Introduction
2 Manganese-Catalyzed Carbonylation of Alkyl Chlorides
3 Manganese-Catalyzed Carbonylation of Alkyl Iodides
4 Iron/Copper-Catalyzed Carbonylation of Alkyl Bromides
5 Iron-Catalyzed Carbonylation of Alkyl Bromides
6 Iron-Catalyzed Carbonylation of Alkyl-Boronic Pinacol
7 Iron-Catalyzed Aminoalkylative Carbonylative Cyclization of Alkenes
8 Conclusion and Outlook
Key words
carbonylation - manganese catalyst - iron catalyst - single-electron transfer - two-electron transferPublication History
Received: 28 September 2024
Accepted after revision: 21 October 2024
Accepted Manuscript online:
21 October 2024
Article published online:
11 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Peng J.-B, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
- 1b Wang Y, Yang H, Zheng Y, Hu M, Zhu J, Bao Z.-P, Zhao Y, Wu X.-F. Nat. Catal. 2024; 7: 1065
- 2a The Chemical Transformations of C1 Compounds . Wu X.-F, Han B, Ding K, Liu Z. Wiley-VCH; Weinheim: 2022
- 2b Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry. Gabriele B. Wiley-VCH; Weinheim: 2021
- 2c Beller M, Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C–X Bonds. Springer; Berlin: 2013
- 3a Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2020; 49: 3187
- 3b Peng JB, Wu FP, Wu XF. Chem. Rev. 2019; 119: 2090
- 3c Wu XF, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
- 3d Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 4 Modern Carbonylation Methods . Kollar L. Wiley-VCH; Weinheim: 2008
- 5a Dekleva TW, Forster D. J. Am. Chem. Soc. 1985; 107: 3565
- 5b Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PI. P, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ. J. Am. Chem. Soc. 2004; 126: 2847
- 6a Bao Z.-P, Wu X.-F. Ind. Chem. Mater. 2024; 2: 276
- 6b Bao Z.-P, Wu X.-F. Angew. Chem. Int. Ed. 2023; 62: e202301671
- 6c Peng J.-B, Liu X.-L, Li L, Wu X.-F. Sci. China Chem. 2022; 65: 441
- 6d Bao Z.-P, Zhang Y, Wang L.-C, Wu X.-F. Sci. China Chem. 2023; 66: 139
- 7 Ai H.-J, Wang H, Li C.-L, Wu X.-F. ACS Catal. 2020; 10: 5147
- 8 Zhu F, Li Y, Wang Z, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 14151
- 9 Wu X.-F, Neumann H. ChemCatChem 2012; 4: 447
- 10a Li Y, Hu Y, Wu X.-F. Chem. Soc. Rev. 2018; 47: 172
- 10b Gu X.-W, Wu X.-F. Org. Chem. Front. 2023; 10: 1587
- 11a Wang L.-C, Chen BZhang Y, Wu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202207970
- 11b Zhou M, Zhao H.-Y, Zhang S, Zhang Y, Zhang X. J. Am. Chem. Soc. 2020; 142: 18191
- 11c Qi X, Bao Z.-P, Yao X.-T, Wu X.-F. Org. Lett. 2020; 22: 6671
- 12a Wang L.-C, Chen BWu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202203797
- 12b Jiang D, Li X, Xiao M, Cheng L.-J. Angew. Chem. Int. Ed. 2024; 61: e202412828
- 13a Yuan Y, Wu X.-F. Green Carbon 2024; 2: 70
- 13b Cheng L.-J, Mankad NP. Acc. Chem. Res. 2021; 54: 2261
- 13c Geng H.-Q, Wu X.-F. Synthesis 2024; 56: 2595
- 13d Zhang Y, Teng B.-H, Wu X.-F. Chem. Sci. 2024; 15: 1418
- 15 Driller KM, Klein H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2009; 48: 6041
- 16a Gribble GW. Acc. Chem. Res. 1998; 31: 141
- 16b Grushin VV, Alper H. Chem. Rev. 1994; 94: 1047
- 16c Hermens JL. Environ. Health Perspect. 1990; 87: 219
- 17 Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press; Boca Raton: 2002
- 18a Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
- 18b Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 18c Hartwig J. Organotransition Metal Chemistry: From Bonding to Catalysis . University Science Books; Sausalito: 2010: 301-320
- 18d Ai H.-J, Geng H.-Q, Gu X.-W, Wu X.-F. ACS Catal. 2023; 13: 1310
- 19a Andersen TL, Donslund AS, Neumann KT, Skrydstrup T. Angew. Chem. Int. Ed. 2018; 57: 800
- 19b Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Angew. Chem. Int. Ed. 2020; 59: 8099
- 19c Ai H.-J, Yuan Y, Wu X.-F. Chem. Sci. 2022; 13: 2481
- 20 Herrick RS, Brown TL. Inorg. Chem. 1984; 23: 4550
- 21 Wegman RW, Olsen RJ, Gard DR, Faulkner LR, Brown TL. J. Am. Chem. Soc. 1981; 103: 6089
- 22 Li Y, Zhu F, Wang Z, Rabeah J, Brückner A, Wu X.-F. ChemCatChem 2017; 9: 915
- 23 Zhao Y.-H, Gu X.-W, Wu X.-F. Org. Chem. Front. 2024; 11: 442
- 24 Li Y, Wu X.-F. Commun. Chem. 2018; 1: 39
- 25a Collman JP. R, Stanley W, Dennis RC. J. Am. Chem. Soc. 1972; 94: 1788
- 25b Cooke MP. J. Am. Chem. Soc. 1970; 92: 6080
- 25c Collman JP, James NC, John IB. J. Am. Chem. Soc. 1972; 94: 5905
- 25d Collman JP. Acc. Chem. Res. 1975; 8: 342
- 26 Ai H.-J, Leidecker BN, Dam PKubis C. Rabeah J, Wu X.-F. Angew.Chem. Int. Ed. 2022; 61: e202211939
- 27 Ai H.-J, Zhao F, Wu X.-F. Chin. J. Catal. 2023; 47: 121
- 28 Gu X.-W, Salvo AD. Mancuso R, Wu X.-F. J. Catal. 2024; 429: 115273
- 29 Sun N.-X, Wang L.-C, Fang Z, Wang C.-SGuo K, Wu X.-F. Org. Lett. 2024; 6: 3140
- 30a Yin Z, Zhang Z, Soulé J.-F, Dixneuf PH, Wu X.-F. J. Catal. 2019; 372: 272
- 30b Zhang Y, Yin Z, Wu X.-F. Adv. Synth. Catal. 2019; 361: 3223
- 30c Zhang Y, Yin Z, Wang H, Wu X.-F. Chem. Commun. 2020; 56: 7045
- 30d Zhang Y, Wu X.-F. Chem. Commun. 2020; 56: 14605
- 30e Meyer T, Yin Z, Wu X.-F. Tetrahedron Lett. 2019; 60: 864
- 30f Chen B, Kuai C.-S, Xu J.-X, Wu X.-F. Adv. Synth. Catal. 2022; 364: 487
- 30g Chen B, Wu X.-F. Org. Biomol. Chem. 2021; 19: 9654
- 31a Yuan Y, Wu F.-P, Schunemann C, Holz J, Kamer PC. J, Wu X.-F. Angew. Chem. Int. Ed. 2020; 59: 22441
- 31b Wu F.-P, Holz J, Yuan Y, Wu X.-F. CCS Chem. 2021; 3: 2643
- 31c Yuan Y, Zhang Y, Li W, Zhao Y, Wu X.-F. Angew. Chem. Int. Ed. 2023; 62: e202309993
- 31d Yuan Y, Zhang YWu X.-F. Nat. Commun. 2024; 15: 6705