Subscribe to RSS
DOI: 10.1055/a-2463-4827
A Resilient and Reusable Ion-Tagged Cu(II) Catalyst for the Microwave-Assisted Synthesis of 2-(N-Arylamino)benzothiazoles
The authors wish to thank the management of the Vellore Institute of Technology (VIT) for providing seed money as a research grant.

Abstract
A simple, quick, and cost-effective protocol is presented herein for the sustainable synthesis of 2-(N-arylamino)benzothiazoles from 2-haloanilines and arylisothiocyanates by using an ionic liquid supported heterogeneous Cu(II) catalyst derived from N-methylimidazole. Compared to the use of homogeneous catalysts and additives, which require long reaction times and high reaction temperatures, this methodology has a broad substrate scope and proceeds in short reaction times to afford compounds in excellent yields under microwave irradiation. In addition, the catalyst can be extracted easily and is recyclable up to five times with no significant loss in catalytic activity.
Key words
2-aminobenzothiazoles - ionic liquids - microwave irradiation - Cu(II) catalysts - sustainable synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2463-4827.
- Supporting Information
Publication History
Received: 25 September 2024
Accepted after revision: 07 November 2024
Accepted Manuscript online:
07 November 2024
Article published online:
02 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Sweeney JB, Rattray M, Pugh V, Powell LA. ACS Med. Chem. Lett. 2018; 9: 552
- 2 Huang G, Cierpicki T, Grembecka J. Bioorg. Chem. 2023; 135: 106477
- 3 Salih OM, Al-Sha’er MA, Basheer HA. ACS Omega 2024; 9: 13928
- 4 Dadmal TL, Katre SD, Mandewale MC, Kumbhare RM. New J. Chem. 2018; 42: 776
- 5 Ismail TI, El-Khazragy N, Azzam RA. RSC Adv. 2024; 14: 16332
- 6 Javahershenas R, Han J, Kazemi M, Jervis PJ. ChemistryOpen 2024; e202400185
- 7 Elsadek MF, Ahmed BM, Farahat MF. Molecules 2021; 26: 1449
- 8 Awaad SS, Sarhan MO, Mahmoud WR, Nasr T, George RF, Georgey HH. J. Mol. Struct. 2023; 1291: 136042
- 9 Gu Y, Li Y.-D, Ge Y, Huang J.-L, Xu H.-J, Hu Y. Asian J. Org. Chem. 2024; 13: e202400076
- 10 Xu Y, Li B, Zhang X, Fan X. J. Org. Chem. 2017; 82: 9637
- 11 Zhilitskaya LV, Yarosh N. О. Chem. Heterocycl. Compd. 2021; 57: 369
- 12 Dias RF. C, Ribeiro BM. R. M, Cassani NM, Farago DN, Antoniucci GA, de Oliveira Rocha RE, de Oliveira Souza F, Pilau EJ, Jardim AC. G, Ferreira RS, de Oliveira Rezende Júnior C. Bioorg. Med. Chem. 2023; 95: 117488
- 13 Catalano A, Carocci A, Defrenza I, Muraglia M, Carrieri A, Van Bambeke F, Rosato A, Corbo F, Franchini C. Eur. J. Med. Chem. 2013; 64: 357
- 14 Philip RM, Saranya PV, Anilkumar G. ChemistrySelect 2024; 9: e202400001
- 15 Kant K, Patel CK, Banerjee S, Naik P, Padhi A, Sharma V, Singh V, Almeer R, Keremane KS, Atta AK, Malakar CC. Asian J. Org. Chem. 2024; 13: e202400223
- 16 Alizadeh SR, Hashemi SM. Med. Chem. Res. 2021; 30: 771
- 17 Benedí C, Bravo F, Uriz P, Fernández E, Claver C, Castillón S. Tetrahedron Lett. 2003; 44: 6073
- 18 Joyce LL, Evindar G, Batey RA. Chem. Commun. 2004; 446
- 19 Wang J, Peng F, Jiang J, Lu Z, Wang L, Bai J, Pan Y. Tetrahedron Lett. 2008; 49: 467
- 20 Chen L, Huang B, Nie Q, Cai M. Appl. Organomet. Chem. 2016; 30: 446
- 21 Parmar D, Sharma T, Sharma AK, Sharma U. Chem. Commun. 2023; 59: 9646
- 22 Qiu J.-W, Zhang X.-G, Tang R.-Y, Zhong P, Li J.-H. Adv. Synth. Catal. 2009; 351: 2319
- 23 Yang J, Li P, Wang L. Tetrahedron 2011; 67: 5543
- 24 Mishra N, Singh AS, Agrahari AK, Singh SK, Singh M, Tiwari VK. ACS Comb. Sci. 2019; 21: 389
- 25 Ding Q, Cao B, Liu X, Zong Z, Peng YY. Green Chem. 2010; 12: 1607
- 26 Zhao N, Liu L, Wang F, Li J, Zhang W. Adv. Synth. Catal. 2014; 356: 2575
- 27 Guo Y.-J, Tang R.-Y, Zhong P, Li J.-H. Tetrahedron Lett. 2010; 51: 649
- 28 Ding Q, He X, Wu J. J. Comb. Chem. 2009; 11: 587
- 29 Ahmad MG, Chanda K. Coord. Chem. Rev. 2022; 472: 214769
- 30 Urbán B, Szabó P, Srankó D, Sáfrán G, Kollár L, Skoda-Földes R. Mol. Catal. 2018; 445: 195
- 31 Deepa M, Selvarasu U, Kalaivani K, Parasuraman K. J. Organomet. Chem. 2021; 954–955: 122073
- 32 Fujie K, Kitagawa H. Coord. Chem. Rev. 2016; 307: 382
- 33 Nishanth Rao R, Jena S, Mukherjee M, Maiti B, Chanda K. Environ. Chem. Lett. 2021; 19: 3315
- 34 Martina K, Cravotto G, Varma RS. J. Org. Chem. 2021; 86: 13857
- 35 Ahmad MG, Balamurali MM, Chanda K. Tetrahedron Lett. 2024; 146: 155182
- 36 Dasmahapatra U, Chanda K, Maiti B. J. Heterocycl. Chem. 2024; 61: 761
- 37 Dasmahapatra U, Maiti B, Chanda K. Org. Biomol. Chem. 2024; 22: 8459
- 38 Rao RN, Das S, Jacob K, Alam MM, Balamurali MM, Chanda K. Org. Biomol. Chem. 2024; 22: 3249
- 39 Jena S, Gonzalez G, Vítek D, Kvasnicová M, Štěpánková S, Strnad M, Voller J, Chanda K. Eur. J. Med. Chem. 2024; 276: 116592
- 40 Synthesis of 2-(N-Arylamino)benzothiazoles 4; General Procedure: All reactions were carried out with a professional microwave oven equipped with a condenser and a glass vial extension (Model No. Cata R; Catalyst Systems, Pune) fitted with an external probe temperature control system to regulate the temperature. 2-Halobenzeneamine 2 (1 mmol) and arylisothiocyanate 3 (1 mmol) were dissolved in DMSO, then catalyst 1 (5 mol%) and K2CO3 were added. The mixture was then subjected to microwave irradiation for 12–15 min. The crude products were purified by washing with hexane/ethyl acetate (8:2) and were characterized by 1H, 13C NMR, and HRMS analyses. This methodology has broad substrate scope and gave up to 95% isolated yield.