RSS-Feed abonnieren
DOI: 10.1055/a-2499-2469
Direct Access to 5,6-Dihydropyrido[2′,1′:2,3]pyrido-Fused Imidazo [4,5-c]quinolines via Consecutive C–N and C–C Bond Formation in Deep Eutectic Solvent under Microwave Irradiation
The authors thank the DST-Govt. of India for the funding provided through DST-SERB-YSS/2015/000450 and VIT for providing the VIT SEED Grant-RGEMS Fund (SG20220031) to carry out this research work.

Abstract
Deep eutectic solvents (DESs) are a novel class of ionic liquids that have recently gained considerable attention as a sustainable, nontoxic substitute for traditional organic solvents; recent years have seen an increasing demand for DES systems to synthesize various heterocyclic moieties. Polyheterocycle-containing scaffolds are important as potential therapeutic agents. Herein, we reported a tandem methodology for the synthesis of rarely explored 5,6-dihydropyrido[2′,1′:2,3]imidazo[4,5-c]quinolines and pyrido[2′,1′:2,3]imidazo[4,5-c]quinolines in a choline chloride based DES medium under microwave irradiation. This sustainable approach offers a clean, straightforward synthetic strategy under mild reaction conditions for the synthesis of a wide range these compounds in excellent yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2499-2469.
- Supporting Information
Publikationsverlauf
Eingereicht: 25. September 2024
Angenommen nach Revision: 09. Dezember 2024
Accepted Manuscript online:
09. Dezember 2024
Artikel online veröffentlicht:
20. Januar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Shagufta, Ahmad I. RSC Med. Chem. 2023; 14: 218
- 2 Shaveta, Mishra S, Singh P. Eur. J. Med. Chem. 2016; 124: 500
- 3 Khatun S, Singh A, Bader GN, Sofi FA. J. Biomol. Struct. Dyn. 2022; 40: 14279
- 4 DeYoung EG, Howe JM, Fang S, Reddy MM, Handel JP, Gillen Miller JT, Wheeler DR, Tumey LN. ACS Med. Chem. Lett. 2023; 14: 1358
- 5 Linton A, Kang P, Ornelas M, Kephart S, Hu Q, Pairish M, Jiang Y, Guo C. J. Med. Chem. 2011; 54: 7705
- 6 Izumi T, Sakaguchi J, Takeshita M, Tawara H, Kato K, Dose H, Tsujino T, Watanabe Y, Kato H. Bioorg. Med. Chem. 2003; 11: 2541
- 7 Dockrell DH, Kinghorn GR. J. Antimicrob. Chemother. 2001; 48: 751
- 8 Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. Angew. Chem. Int. Ed. 2023; 62: e202218427
- 9 Pandey AK, Sharma R, Singh A, Shukla S, Srivastava K, Puri SK, Kumar B, Chauhan PM. S. RSC Adv. 2014; 4: 26757
- 10 Kale A, Bingi C, Ragi NC, Sripadi P, Tadikamalla PR, Atmakur K. Synthesis 2017; 49: 1603
- 11 Mani GS, Rao AV. S, Tangella Y, Sunkari S, Sultana F, Namballa HK, Shankaraiah N, Kamal A. New J. Chem. 2018; 42: 15820
- 12 Fan X.-S, Zhang J, Li B, Zhang X.-Y. Chem. Asian J. 2015; 10: 1281
- 13 Dasmahapatra U, Kumar CK, Das S, Subramanian PT, Murali P, Isaac AE, Ramanathan K, Balamurali MM, Chanda K. Front. Chem. 2022; 10: 991369
- 14 Jena S, Gonzalez G, Vítek D, Kvasnicová M, Štěpánková S, Strnad M, Voller J, Chanda K. Eur. J. Med. Chem. 2024; 276: 116592
- 15 Di Carmine G, Abbott AP, D’Agostino C. React. Chem. Eng. 2021; 6: 582
- 16 Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Chem. Rev. 2021; 121: 1232
- 17 Halder AK, Cordeiro MN. D. S. ACS Sustainable Chem. Eng. 2019; 7: 10649
- 18 Abranches DO, Martins MA. R, Silva LP, Schaeffer N, Pinho SP, Coutinho JA. P. Chem. Commun. 2019; 55: 10253
- 19 Ahmad MG, Chanda K. Coord. Chem. Rev. 2022; 472: 214769
- 20 Das S, Chanda K. Synthesis 2024; 56: 693
- 21 Rao RN, Das S, Jacob K, Alam MM, Balamurali MM, Chanda K. Org. Biomol. Chem. 2024; 22: 3249
- 22 Dasmahanatra U, Maiti B, Chanda K. Org. Biomol. Chem. 2024; 22: 8459