Subscribe to RSS
DOI: 10.1055/a-2499-3563
Lemon Juice as a Natural Biodegradable Catalyst for an Ecofriendly One-Pot Pseudo-Three-Component Synthesis of N,1-Dimethyl-6-(methylsulfanyl)-3,5-dinitro-1,4-dihydropyridine-2-amines
Saigal and S.S. acknowledge a research associateship and a senior research fellowship from the Department of Science and Technology (DST) and the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India, respectively. Financial support from the DST and DoP is also gratefully acknowledged.

Abstract
A one-pot pseudo-three-component reaction strategy has been designed for synthesizing all-carbon-functionalized hexasubstituted N,1-dimethyl-6-(methylsulfanyl)-3,5-dinitro-1,4-dihydropyridine-2-amines under neat conditions using inexpensive, readily available, natural, biodegradable lemon juice as a catalyst. The acidic reaction environment induced by lemon juice provided a superior catalytic performance, with a high reaction rate and high product yields, to those of a pool of Lewis and Brønsted acid catalysts. The wide substrate scope and functional-group tolerance permitted diversity creation with electronic and structural variations in a robust and operationally simple manner. The recoverability/reusability of the lemon juice catalyst and the easy purification of the end products by precipitation/filtration avoid the need for column chromatography or hazardous organic solvents and confirm that this is an environmentally benign sustainable technology. Moreover, a gram-scale operation and chemical modifications of the final products demonstrated some promising advantages.
Key words
1,4-dihydropyridines - acid catalyst - solvent-free reaction - green chemistry - lemon juiceSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2499-3563.
- Supporting Information
Publication History
Received: 05 October 2024
Accepted after revision: 09 December 2024
Accepted Manuscript online:
09 December 2024
Article published online:
15 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Mishra AP, Bajpai A, Rai AK. Mini-Rev. Med. Chem. 2019; 19: 1219
- 1b Sharma VK, Singh SK. RSC Adv. 2017; 7: 2682
- 1c Carosati E, Ioan P, Micucci M, Broccatelli F, Cruciani G, Zhorov BS, Chiarini A, Budriesi R. Curr. Med. Chem. 2012; 19: 4306
- 1d Triggle DJ. Cell. Mol. Neurobiol. 2003; 23: 293
- 1e Shan R, Velazquez C, Knaus EE. J. Med. Chem. 2004; 47: 254
- 1f Sambongi Y, Nitta H, Ichihashi K, Futai M, Ueda I. J. Org. Chem. 2002; 67: 3499
- 1g Kawase M, Shah A, Gaveriya H, Motohashi N, Sakagami H, Varga A, Molnár J. Bioorg. Med. Chem. 2002; 10: 1051
- 1h Bennasar M.-L, Vidal B, Bosch J. J. Org. Chem. 1997; 62: 3597
- 1i Bennasar M.-L, Vidal B, Bosch J. J. Org. Chem. 1996; 61: 1916
- 1j Böcker RH, Guengerich FP. J. Med. Chem. 1986; 29: 1596
- 2a Katiyar S, Ahmad S, Kumar A, Ansari A, Bisen AC, Ahmad I, Gulzar F, Bhatta RS, Tamrakar AK, Sashidhara KV. J. Med. Chem. 2024; 67: 11957
- 2b Khan MM, Saigal Saigal, Khan S, Shareef S, Danish M. ChemistrySelect 2018; 3: 6830
- 2c Pajuste K, Hyvönen Z, Petrichenko O, Kaldre D, Rucins M, Cekavicus B, Ose V, Skrivele B, Gosteva M, Morin-Picardat E, Plotniece M, Sobolev A, Duburs G, Ruponen M, Plotniece A. New J. Chem. 2013; 37: 3062
- 2d Sashidhara KV, Kumar M, Khedgikar V, Kushwaha P, Modukuri RK, Kumar A, Gautam J, Singh D, Sridhar B, Trivedi R. J. Med. Chem. 2013; 56: 109
- 2e Zhou X.-f, Coburn RA, Morris ME. J. Pharm. Sci. 2005; 94: 2256
- 2f Hilgeroth A, Lilie H. Eur. J. Med. Chem. 2003; 38: 495
- 2g Straub T, Boesenberg C, Gekeler V, Boege F. Biochemistry 1997; 36: 10777
- 2h van Rhee AM, Jiang J.-l, Melman N, Olah ME, Stiles GL, Jacobson KA. J. Med. Chem. 1996; 39: 2980
- 3a Kiruthika SE, Perumal PT. RSC Adv. 2014; 4: 3758
- 3b Affeldt RF, de Amorin Borges AC, Russowsky D, Rodembusch FS. New J. Chem. 2014; 38: 4607
- 4 Fasani E, Fagnoni M, Dondi D, Albini A. J. Org. Chem. 2006; 71: 2037
- 5 Xue L, Wu L, Li Y, Yang Q, Sun D, Zhang H, Xu H, Li Y. Luminescence 2022; 37: 177
- 6 Shi K, Lu Z.-Y, Yu Z.-D, Liu H.-Y, Zou Y, Yang C.-Y, Dai Y.-Z, Lu Y, Wang J.-Y, Pei J. Adv. Electron. Mater. 2017; 3: 1700164
- 7a Saigal Saigal, Arif A, Khan MM. J. Mol. Struct. 2024; 1300: 137193
- 7b Hu X, Chen L, Li H, Xu Q, Liu X, Feng X. ACS Catal. 2023; 13: 6675
- 7c Tabassum S, Govindaraju S, Khan R.-u.-R, Pasha MA. RSC Adv. 2016; 6: 29802
- 7d Zhu Z.-Q, Xie Z.-B, Le Z.-G. J. Org. Chem. 2016; 81: 9449
- 7e Lu L, Xu H, Zhou P, Yu F. Chin. J. Org. Chem. 2016; 36: 2858
- 7f Kiyani H, Ghiasi M. Res. Chem. Intermed. 2015; 41: 5177
- 7g Ghosh PP, Mukherjee P, Das AR. RSC Adv. 2013; 3: 8220
- 8a Malek R, Maj M, Wnorowski A, Jóźwiak K, Martin H, Iriepa I, Moraleda I, Chabchoub F, Marco-Contelles J, Ismaili L. Bioorg. Chem. 2019; 91: 103205
- 8b Huang Q, Li Y, Sheng C, Dou Y, Zheng M, Zhu Z, Wang J. J. Hypertens. 2015; 33: e94
- 8c Khedkar SA, Auti PB. Mini-Rev. Med. Chem. 2014; 14: 282
- 8d Jiang J.-l, van Rhee AM, Melman N, Ji X.-d, Jacobson KA. J. Med. Chem. 1996; 39: 4667
- 8e Arrowsmith JE, Campbell SF, Cross PE, Stubbs JK, Burges RA, Gardiner DG, Blackburn KJ. J. Med. Chem. 1986; 29: 1696
- 9 Niaz H, Kashtoh H, Khan JA. J, Khan A, Wahab A.-t, Alam MT, Khan KM, Perveen S, Choudhary MI. Eur. J. Med. Chem. 2015; 95: 199
- 10 Anaikutti P, Makam P. Bioorg. Chem. 2020; 105: 104379
- 11 Sidhom PA, El-Bastawissy E, Ibrahim MA. A, Shawky AM, Salama A, El-Moselhy T. J. Med. Chem. 2023; 66: 991
- 12a Biala G, Kedzierska E, Kruk-Slomka M, Orzelska-Gorka J, Hmaidan S, Skrok A, Kaminski J, Havrankova E, Nadaska D, Malik I. Pharmaceuticals 2023; 16: 1283
- 12b Potosky J. Drug Discovery Today 2005; 10: 115
- 12c Lombardino JG, Lowe JA. III. Nat. Rev. Drug Discovery 2004; 3: 853
- 12d Venkatesh S, Lipper RA. J. Pharm. Sci. 2000; 89: 145
- 13a Khan MM, Shareef S, Saigal Saigal, Sahoo SC. RSC Adv. 2019; 9: 26393
- 13b Saigal Saigal, Khan S, Rahman H, Shafiullah Shafiullah, Khan MM. RSC Adv. 2019; 9: 14477
- 13c Zhang L, Dong J, Xu X, Liu Q. Chem. Rev. 2016; 116: 287
- 13d Manjunatha SG, Reddy KV, Rajappa S. Tetrahedron Lett. 1990; 31: 1327
- 14a Buskes MJ, Coffin A, Troast DM, Stein R, Blanco M.-J. ACS Med. Chem. Lett. 2023; 14: 376
- 14b Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 14c Dömling A. Chem. Rev. 2006; 106: 17
- 14d Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 14e Wipf P, Stephenson CR. J, Okumura K. J. Am. Chem. Soc. 2003; 125: 14694
- 14f Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 15a Badiger KB, Kamanna K, Hanumanthappa R, Devaraju KS, Giddaerappa G, Sannegowda LK. Polycycl. Aromat. Compd. 2024; 44: 333
- 15b Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F. Int. J. Mol. Sci. 2023; 24: 6581
- 15c Badiger KB, Khatavi S, Kamanna K. Polycycl. Aromat. Compd. 2023; 43: 1349
- 15d John SE, Gulati S, Shankaraiah N. Org. Chem. Front. 2021; 8: 4237
- 15e Abdelraheem EM. M, Shaabani S, Dömling A. Synlett. 2018; 29: 1136
- 15f Khan MM, Khan S, Saigal Saigal, Iqbal S. RSC Adv. 2016; 6: 42045
- 15g Parikh N, Roy SR, Seth K, Kumar A, Chakraborti AK. Synthesis 2016; 48: 547
- 15h Zarganes-Tzitzikas T, Chandgude AL, Dömling A. Chem. Rec. 2015; 15: 981
- 15i Zarganes-Tzitzikas T, Dömling A. Org. Chem. Front. 2014; 1: 834
- 15j Slobbe P, Ruijter E, Orru RV. A. Med. Chem. Commun. 2012; 3: 1189
- 15k Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 15l Ugi I, Dömling A, Hörl W. Endeavour 1994; 18: 115
- 16 Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 17a Khan MM, Saigal Saigal, Khan S, Shareef S, Sahoo SC. RSC Adv. 2018; 8: 41892
- 17b Rao HS. P, Parthiban A. Org. Biomol. Chem. 2014; 12: 6223
- 18 Tundo P, Anastas P, Black DStC, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W. Pure Appl. Chem. 2000; 72: 1207
- 19a Moosvi SK, Naqash WG, Najar MH. Green Chemistry: Principles and Designing of Green Synthesis . de Gruyter; Berlin: 2021: 21, chapter 2
- 19b Kralisch D, Ott D, Gericke D. Green Chem. 2015; 17: 123
- 19c Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M. Green Chem. 2008; 10: 31
- 19d Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 19e Tucker JL. Org. Process Res. Dev. 2006; 10: 315
- 20a Jessop P. Green Chem. 2020; 22: 13
- 20b Climent MJ, Corma A, Iborra S, Mifsud M, Velty A. Green Chem. 2010; 12: 99
- 20c Poliakoff M, Licence P. Nature 2007; 450: 810
- 21 Maingle M, Sunny S, Sheeba L, Pathan FR, Seth K. Synthesis 2024; 56: 312
- 22 Sunny S, Maingle M, Sheeba L, Pathan FR, Sankar JG, Juloori H, Gadewar SG, Seth K. Green Chem. 2024; 26: 3149
- 23 Saigal Saigal, Sudheer N, Sahoo SC, Khan MM, Seth K. ACS Sustainable Chem. Eng. 2024; 12: 13336
- 24a Kumar V, Saha R, Chatterjee S, Mishra V. React. Chem. Eng. 2023; 8: 2677
- 24b Patil RC, Damate SA, Zambare DN, Patil SS. New J. Chem. 2021; 45: 9152
- 24c Gulati S, Singh R, Sindhu J, Sangwan S. Org. Prep. Proced. Int. 2020; 52: 381
- 24d Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 25a Mohamed MA. A, Bekhit AA, Allah OA. A, Kadry AM, Ibrahim TM, Bekhit SA, Amagase K, El-Saghier AM. M. RSC Adv. 2021; 11: 2905
- 25b Das D. Tetrahedron Lett. 2020; 61: 152298
- 25c Saha A, Jana A, Choudhury LH. New J. Chem. 2018; 42: 17909
- 25d Petronijević J, Bugarčić Z, Bogdanović GA, Stefanović S, Janković N. Green Chem. 2017; 19: 707
- 26a Valipour M, Habibzadeh S, Taherimehr M. J. Indian Chem. Soc. 2024; 101: 101382
- 26b Kumari S, Singh S, Srivastava V. Mol. Divers. 2020; 24: 717
- 26c Prasad MG, Lakshmi CV, Katari NK, Anand K, Pal M, Jonnalagadda SB. Comb. Chem. High Throughput Screening 2019; 22: 625
- 26d Khan MM, Khan S, Saigal Saigal, Sahoo SC. ChemistrySelect 2018; 3: 1371
- 27a Klimek-Szczykutowicz M, Szopa A, Ekiert H. Plants 2020; 9: 119
- 27b Penniston KL, Nakada SY, Holmes RP, Assimos DG. J. Endourol. 2008; 22: 567
- 28a Mahato SK, Acharya C, Wellington KW, Bhattacharjee P, Jaisankar P. ACS Omega 2020; 5: 2503
- 28b Kumar D, Kommi DN, Bollineni N, Patel AR, Chakraborti AK. Green Chem. 2012; 14: 2038
- 28c Bhagat S, Chakraborti AK. J. Org. Chem. 2008; 73: 6029
- 28d Shivani Shivani Shivani, Pujala B, Chakraborti AK. J. Org. Chem. 2007; 72: 3713
- 28e Bhagat S, Chakraborti AK. J. Org. Chem. 2007; 72: 1263
- 29a Monika Monika, Chander Chander, Ram S, Sharma PK. Asian J. Org. Chem. 2023; 12: e202200616
- 29b Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. New J. Chem. 2021; 45: 16389
- 29c Khan MM, Khan S, Saigal Saigal, Singh A. Tetrahedron Lett. 2019; 60: 150996
- 29d Jereb M, Vražič D, Zupan M. Tetrahedron 2011; 67: 1355
- 30a Taber DF, Brannick SJ. J. Chem. Educ. 2015; 92: 1261
- 30b Shen B, Löffler D, Zeller K.-P, Übele M, Reischl G, Machulla H.-J. J. Fluorine Chem. 2007; 128: 1461
- 31 CCDC 2400922 contains the supplementary crystallographic data for compound 10x. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 32 Pan Z, Mao K, Zhu G, Wang C, Zhang J, Rong L. J. Org. Chem. 2020; 85: 3364
- 33a Mahesha CK, Mandal SK, Sakhuja R. Asian J. Org. Chem. 2020; 9: 1199
- 33b Kumar M, Verma S, Verma AK. Org. Lett. 2020; 22: 4620
- 34a Chen D, Zhang M, Zhang D, Zhang Z, Shao X, Xu X, Li Z, Yang W.-L. Org. Lett. 2024; 26: 508
- 34b Makarov VA, Granik VG. Russ. Chem. Rev. 1998; 67: 923
- 35 Yang J.-M, Shao B.-N, Hu X.-M, Ma J.-B, Liu J, Yan S.-J. Org. Chem. Front. 2024; 11: 6144
- 36 Paoletti P. Pure Appl. Chem. 1984; 56: 491
- 37a Eshghi H, Rahimizadeh M, Saberi S. Catal. Commun. 2008; 9: 2460
- 37b Gopinath R, Haque SJ, Patel BK. J. Org. Chem. 2002; 67: 5842
- 37c Meskens FA. J. Synthesis 1981; 501
- 37d Anteunis M, Becu C. Synthesis 1974; 23
- 38a McElroy CR, Constantinou A, Jones LC, Summerton L, Clark JH. Green Chem. 2015; 17: 3111
- 38b Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
- 39a Fantozzi N, Volle J.-N, Porcheddu A, Virieux D, García F, Colacino E. Chem. Soc. Rev. 2023; 52: 6680
- 39b Akakios SG, Bode ML, Sheldon RA. Green Chem. 2021; 23: 3334
- 40 Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L. Green Chem. 2016; 18: 3471
- 41 Abedinifar F, Larijani B, Mahdavi M. RSC Adv. 2022; 12: 30436
- 42a Wen L.-R, Sun Q.-C, Zhang H.-L, Li M. Org. Biomol. Chem. 2013; 11: 781
- 42b Yan S, Chen Y, Liu L, He N, Lin J. Green Chem. 2010; 12: 2043
- 43 Wei C, Zhang J.-Q, Zhang J.-J, Liang C, Mo D.-L. Org. Chem. Front. 2020; 7: 1520
- 44 For an oxa-1,4-addition, see: Zou N, Lan J.-X, Yan G.-G, Liang C, Su G.-F, Mo D.-L. Org. Lett. 2020; 22: 8446
- 45 Morbale ST, Jadhav SD, Deshmukh MB, Patil SS. RSC Adv. 2015; 5: 84610
- 46a Banerjee B, Priya A, Kaur M, Sharma A, Singh A, Gupta VK, Jaitak V. Catal. Lett. 2023; 153: 3547
- 46b Kumar D, Seth K, Kommi DN, Bhagat S, Chakraborti AK. RSC Adv. 2013; 3: 15157
- 46c Lipshutz BH, Ghorai S. Aldrichimica Acta 2012; 45: 3
- 47 N,1-Dimethyl-6-(methylsulfanyl)-3,5-dinitro-4-phenyl-1,4-dihydropyridin-2-amine17a (10a); Typical Procedure A mixture of 11a (101.91 μL, 1.0 mmol, 1.0 equiv), 12a (296.40 mg, 2.0 mmol, 2.0 equiv), and lemon juice (50 μL) was placed in a reaction tube at 70 °C (preheated oil bath). The resulting mixture was stirred for 5 min until the starting materials were consumed (TLC). The mixture was cooled to r.t. and cold EtOH (1.0 mL) was added to give a solid precipitate of the crude product, which was collected by filtration. The residue was washed with cold EtOH (1.0 mL) and dried in a vacuum oven at 50 °C overnight to afford 10a as a yellow solid; yield: 326.3 mg (97%); mp 200–202 °C. IR (ATR) νmax: 3221, 3051, 2921, 2851, 1615, 1496, 1354, 1241, 1051, 722 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ (ppm) = 10.12 (s, 1 H), 7.32 (t, J = 7.6 Hz, 2 H), 7.28–7.24 (m, 1 H), 7.15 (d, J = 6.8 Hz, 2 H), 5.99 (s, 1 H), 3.46 (s, 3 H), 3.11 (d, J = 4.8 Hz, 3 H), 2.58 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ (ppm) = 156.5, 155.5, 140.2, 137.7, 129.4, 128.0, 127.2, 113.3, 43.4, 41.0, 32.3, 16.6. 3-[1-Methyl-2-(methylamino)-6-(methylsulfanyl)-3,5-dinitro-1,4-dihydropyridin-4-yl]phenol (10j) Light-yellow solid; yield: 89%; mp 217–219 °C. IR (ATR νmax): 3329, 3161, 3011, 2961, 2843, 1617, 1462, 1332, 1241, 1050, 727 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ (ppm) = 10.09 (s, 1 H), 9.47 (s, 1 H), 7.10 (t, J = 8.4 Hz, 1 H), 6.63 (dd, J = 8.8, 3.2 Hz, 1 H), 6.55 (t, J = 8.0 Hz, 2 H), 5.94 (s, 1 H), 3.42 (s, 3 H), 3.09 (d, J = 4.8 Hz, 3 H), 2.57 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ (ppm) = 158.1, 156.5, 155.1, 152.7, 141.7, 137.8, 130.4, 117.4, 114.9, 113.9, 43.2, 40.7, 32.3, 16.5. HRMS (ESI): m/z [M + H]+ calcd for C14H17N4O5S: 353.0920; found: 353.0878. N,1-Dimethyl-6-(methylsulfanyl)-3,5-dinitro-4-(2-thienyl)-1,4-dihydropyridin-2-amine17b (10w) Light-yellow solid; yield: 85%; mp 221–225 °C. IR (ATR νmax): 3139, 3051, 2951, 2829, 1619, 1435, 1312, 1243, 1051, 739 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ (ppm) = 10.05 (s, 1 H), 7.37 (dd, J = 5.2, 1.2 Hz, 1 H), 6.93 (dd, J = 5.2, 1.2 Hz, 1 H), 6.85–6.83 (m, 1 H), 6.22 (d, J = 0.8 Hz, 1 H), 3.41 (s, 3 H), 3.09 (s, 3 H), 2.59 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ (ppm) = 156.6, 156.1, 143.6, 136.9, 127.6, 125.6, 124.8, 43.2, 36.6, 32.3, 16.6.
- 48 Cooper TW. J, Campbell IB, Macdonald SJ. F. Angew. Chem. Int. Ed. 2010; 49: 8082
For selected representative examples, see:
For selected representative examples, see:
For selected representative examples, see:
For selected representative examples, see:
For selected representative examples, see:
For selected representative examples of iodine catalysis, see:
For cyclic acetal formation, see:
For selected representative examples, see: