RSS-Feed abonnieren
DOI: 10.1055/a-2504-3732
Palladium-Catalyzed ortho-Alkylation of Iodoarenes Enabled by a Cooperative Cycloolefin Ligand and a Bulky Trialkylphosphine
Financial support was provided by the National Natural Science Foundation of China (Grant No. 21933007).

Abstract
We recently achieved ortho-alkylation of iodoarenes utilizing a dual-ligand catalytic system that effectively combines palladium/olefin ligand cooperative catalysis with reversible C(sp2)–I reductive elimination enabled by a bulky trialkylphosphine ligand. Through careful mechanistic investigations, we confirmed the compatibility of the crucial steps involved in this process by isolating key organometallic intermediates and studying the stoichiometry of their transformations. By utilizing this protocol, we successfully achieved the ortho-alkylation of a variety of iodoarene substrates, thereby expanding the scope of applications for Catellani-type reactions. This study showcases the synthetic potential of the Pd/olefin ligand cooperative system as an innovative complement to established Pd/norbornene catalysis. In this Synpacts article, we present the conceptual framework underpinning this reaction and detail the key aspects of its development.
1 Introduction
2 Research Background
2.1 The Catellani Reaction: Pd/Norbornene Catalysis
2.2 Cooperative Cycloolefin Ligands for the Catellani-Type Reactions
2.3 C–X Reductive Elimination on Pd Center
3 Development of the Reaction
3.1 Proof-of-Concept by Stoichiometric Reactions
3.2 Substrate Scope and Synthetic Applications
4 Conclusion
Key words
ortho-alkylation - iodoarene - reductive elimination - cooperative olefin ligand - palladium catalysis - Catellani reactionPublikationsverlauf
Eingereicht: 07. November 2024
Angenommen: 17. Dezember 2024
Accepted Manuscript online:
17. Dezember 2024
Artikel online veröffentlicht:
09. April 2025
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
- 1b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
- 1c Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 2a Hodgson HH. Chem. Rev. 1947; 40: 251
- 2b Evano G, Nitelet A, Thilmany P, Dewez DF. Front. Chem. 2018; 6: 114
- 3 Botla V, Fontana M, Voronov A, Maggi R, Motti E, Maestri G, Della Ca’ N. Angew. Chem. Int. Ed. 2023; 62: e202218928
- 4 Wang X.-X, Jiao L. J. Am. Chem. Soc. 2024; 146: 25552
- 5 Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. Engl. 1997; 36: 119
- 6a Lautens M, Piguel S. Angew. Chem. Int. Ed. 2000; 39: 1045
- 6b Bressy C, Alberico D, Lautens M. J. Am. Chem. Soc. 2005; 127: 13148
- 6c Candito DA, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 6713
- 6d Liu H, El-Salfiti M, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 9846
- 7a Catellani M. Top. Organomet. Chem. 2005; 14: 21
- 7b Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
- 7c Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2009; 292: 1
- 7d Ye J, Lautens M. Nat. Chem. 2015; 7: 863
- 7e Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 7f Liu Z.-S, Gao Q, Cheng H.-G, Zhou Q. Chem. Eur. J. 2018; 24: 15461
- 7g Wegmann M, Henkel M, Bach T. Org. Biomol. Chem. 2018; 16: 5376
- 7h Wang J, Dong G. Chem. Rev. 2019; 119: 7478
- 7i Dong S, Luan X. Chin. J. Chem. 2021; 39: 1690
- 7j Chen Z, Zhang F. Tetrahedron 2023; 134: 133307
- 8a Dong Z, Dong G. J. Am. Chem. Soc. 2013; 135: 18350
- 8b Zhou P.-X, Ye Y.-Y, Liu C, Zhao L.-B, Hou J.-Y, Chen D.-Q, Tang Q, Wang A.-Q, Zhang J.-Y, Huang Q.-X, Xu P.-F, Liang Y.-M. ACS Catal. 2015; 5: 4927
- 8c Wang J, Zhang L, Dong Z, Dong G. Chem 2016; 1: 581
- 8d Sun F.-G, Li M, He C, Wang B, Li B, Sui X, Gu Z. J. Am. Chem. Soc. 2016; 138: 7456
- 8e Bai L, Liu J, Hu W, Li K, Wang Y, Luan X. Angew. Chem. Int. Ed. 2018; 57: 5151
- 8f Cai W, Gu Z. Org. Lett. 2019; 21: 3204
- 8g Lv W, Chen Y, Wen S, Ba D, Cheng G. J. Am. Chem. Soc. 2020; 142: 14864
- 8h Zhang Z, Chen X, Li X.-S, Wang C.-T, Niu Z.-J, Zhang B.-S, Liu X.-Y, Liang Y.-M. Org. Lett. 2022; 24: 6897
- 8i Liu X, Fu Y, Chen Z, Liu P, Dong G. Nat. Chem. 2023; 15: 1391
- 9a Motti E, Della Ca’ N, Xu D, Piersimoni A, Bedogni E, Zhou Z.-M, Catellani M. Org. Lett. 2012; 14: 5792
- 9b Zhou P.-X, Ye Y.-Y, Ma J.-W, Zheng L, Tang Q, Qiu Y.-F, Song B, Qiu Z.-H, Xu P.-F, Liang Y.-M. J. Org. Chem. 2014; 79: 6627
- 9c Shi H, Babinski DJ, Ritter T. J. Am. Chem. Soc. 2015; 137: 3775
- 9d Sun F, Li M, He C, Wang B, Li B, Sui X, Gu Z. J. Am. Chem. Soc. 2016; 138: 7456
- 9e Li R, Dong G. Angew. Chem. Int. Ed. 2018; 57: 1697
- 9f Zhang B.-S, Li Y, An Y, Zhang Z, Liu C, Wang X.-G, Liang Y.-M. ACS Catal. 2018; 8: 11827
- 9g Bai L, Liu J, Hu W, Li K, Wang Y, Luan X. Angew. Chem. Int. Ed. 2018; 57: 5151
- 10a Jiao L, Bach T. J. Am. Chem. Soc. 2011; 133: 12990
- 10b Jiao L, Herdtweck E, Bach T. J. Am. Chem. Soc. 2012; 134: 14563
- 10c Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li SH, Engle KM, Yu J.-Q. Nature 2015; 519: 334
- 10d Dong Z, Wang J, Dong G. J. Am. Chem. Soc. 2015; 137: 5887
- 10e Shi G, Shao C, Ma X, Gu Y, Zhang Y. ACS Catal. 2018; 8: 3775
- 10f Chen S, Liu Z.-S, Yang T, Hua Y, Zhou Z, Cheng H.-G, Zhou Q. Angew. Chem. Int. Ed. 2018; 57: 7161
- 10g Li R, Liu F, Dong G. Chem 2019; 5: 929
- 10h Sukowski V, van Borselen M, Mathew S, Fernández-Ibánez MA. Angew. Chem. Int. Ed. 2022; 61: e202201750
- 11a Shen P.-X, Wang X.-C, Wang P, Zhu R.-Y, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11574
- 11b Wang J, Li R, Dong Z, Liu P, Dong G. Nat. Chem. 2018; 10: 866
- 11c Li R, Dong G. J. Am. Chem. Soc. 2020; 142: 17859
- 11d Liu X, Wang J, Dong G. J. Am. Chem. Soc. 2021; 143: 9991
- 12a Liu Z.-S, Hua Y, Gao Q, Ma Y, Tang H, Shang Y, Cheng H.-G, Zhou Q. Nat. Catal. 2020; 3: 727
- 12b Gao Q, Wu C, Deng S, Li L, Liu Z.-S, Hua Y, Ye J, Liu C, Cheng H.-G, Cong H, Jiao Y, Zhou Q. J. Am. Chem. Soc. 2021; 143: 7253
- 12c Liu Z.-S, Xie P.-P, Hua Y, Wu C, Ma Y, Chen J, Cheng H.-G, Hong X, Zhou Q. Chem 2021; 7: 1917
- 12d Hua Y, Liu Z.-S, Xie PP, Ding B, Cheng H.-G, Hong X, Zhou Q. Angew. Chem. Int. Ed. 2021; 60: 12824
- 12e Bai M, Jia S, Zhang J, Cheng H.-G, Cong H, Liu S, Huang Z, Huang Y, Chen X, Zhou Q. Angew. Chem. Int. Ed. 2022; 61: e202205245
- 12f Zhou L, Cheng H.-G, Li L, Wu K, Hou J, Jiao C, Deng S, Liu Z, Yu J.-Q, Zhou Q. Nat. Chem. 2023; 15: 815
- 13 Zheng Y.-X, Jiao L. Nat. Synth. 2022; 1: 180
- 14 Wang F.-Y, Li Y.-X, Jiao L. J. Am. Chem. Soc. 2023; 145: 4871
- 15a Roy AH, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 1232
- 15b Stambuli JP, Bühl M, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 9346
- 15c Roy AH, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 13944
- 15d Roy AH, Hartwig JF. Organometallics 2004; 23: 1533
- 16 Le CM, Menzies PJ. C, Petrone DA, Lautens M. Angew. Chem. Int. Ed. 2015; 54: 254
- 17a Quesnel JS, Arndtsen BA. J. Am. Chem. Soc. 2013; 135: 16841
- 17b Fang X, Cacherat B, Morandi B. Nat. Chem. 2017; 9: 1105
- 17c Lee YH, Morandi B. Nat. Chem. 2018; 10: 1016
- 17d De La Higuera Macias M, Arndtsen BA. J. Am. Chem. Soc. 2018; 140: 10140
- 18a Newman SG, Lautens M. J. Am. Chem. Soc. 2010; 132: 11416
- 18b Nareddy P, Mantilli L, Guénée L, Mazet C. Angew. Chem. Int. Ed. 2012; 51: 3826
- 18c Zeidan N, Bognar S, Lee S, Lautens M. Org. Lett. 2017; 19: 5058
For representative reviews of the Catellani reaction, see:
For selected recent researches on novel electrophiles in the Catellani reaction, see:
For selected recent research on novel termination reagents in the Catellani reaction, see:
For selected recent research on Pd(II)-initiated Catellani reaction, see:
For selected recent research on structurally modified NBEs for fine-tuning of the Catellani reaction, see:
For selected recent research on structurally modified NBEs to achieve asymmetric reactions, see: