Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/a-2509-0121
DOI: 10.1055/a-2509-0121
letter
Photodriven Site-Selective Deuteration of Pyridyl Ketones with Deuterium Oxide
This work was financially supported by the National Key Research and Development Program of China (2020YFA0710201), the National Natural Science Foundation of China (22271094, 22425012), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0610000), the Shanghai Rising Star Program (21QA1402800), the Innovation Program of Shanghai Municipal Education Commission (2023ZKZD37), and Fundamental Research Funds for the Central Universities.

Abstract
In this work, a photodriven phosphine/D2O-mediated method for the reductive deuteration of pyridyl ketones was developed. By regulating the reaction conditions, site-selective deuteration of pyridyl diketones was achieved with high deuterium-incorporation rates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2509-0121.
- Supporting Information
Publication History
Received: 06 December 2024
Accepted after revision: 30 December 2024
Accepted Manuscript online:
30 December 2024
Article published online:
05 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Qureshi MH, Bao J, Kleine TS, Kim K.-J, Carothers KJ, Molineux J, Cho E, Kang K.-S, Godman NP, Coropceanu V, Bredas J.-L, Norwood RA, Njardarson JT, Pyun J. J. Am. Chem. Soc. 2023; 145: 27821
- 2 Mullard A. Nat. Rev. Drug Discovery 2016; 15: 219
- 3 Meng X, Evans BR, Yoo CG, Pu Y, Davison BH, Ragauskas AJ. ACS Sustainable Chem. Eng. 2017; 5: 8004
- 4 Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
- 5 Elmore CS, Bragg RA. Bioorg. Med. Chem. Lett. 2015; 25: 167
- 6 Isin EM, Elmore CS, Nilsson GN, Thompson RA, Weidolf L. Chem. Res. Toxicol. 2012; 25: 532
- 7 Lukin S, Tireli M, Stolar T, Barišić D, Blanco MV, di Michiel M, Užarević K, Halasz I. J. Am. Chem. Soc. 2019; 141: 1212
- 8 Gant TG. J. Med. Chem. 2014; 57: 3595
- 9 Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
- 10 Itoga M, Yamanishi M, Udagawa T, Kobayashi A, Maekawa K, Takemoto Y, Naka H. Chem. Sci. 2022; 13: 8744
- 11 Li H, Lai Z, Peng M, Ning L, Dong Q, Hou Y, An J. Org. Lett. 2022; 24: 5319
- 12 Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
- 13 Flinker M, Yin H, Juhl RW, Eikeland EZ, Overgaard J, Nielsen DU, Skrydstrup T. Angew. Chem. Int. Ed. 2017; 56: 15910
- 14 Zhu N, Su M, Wan W.-M, Li Y, Bao H. Org. Lett. 2020; 22: 991
- 15 Kurimoto A, Sherbo RS, Cao Y, Loo NW. X, Berlinguette CP. Nat. Catal. 2020; 3: 719
- 16 Shao T, Li Y, Ma N, Zhao X, Qiao B, Jiang Z. iScience 2019; 16: 410
- 17 Cai J, Li Y, Ye Z, Wang W, Lin YM, Gong L. Green Synth. Catal. 2023; 4: 253
- 18 Li N, Li Y, Wu X, Zhu C, Xie J. Chem. Soc. Rev. 2022; 51: 6291
- 19 Han C, Han G, Yao S, Yuan L, Liu X, Cao Z, Mannodi-Kanakkithodi A, Sun Y. Adv. Sci. (Weinheim, Ger.) 2022; 9: 2103408
- 20 Nan X.-L, Wang Y, Li X.-B, Tung C.-H, Wu L.-Z. Chem. Commun. 2021; 57: 6768
- 21a Chen S, Xi C. Org. Chem. Front. 2024; 11: 5415
- 21b Zhang J, Mück-Lichtenfeld C, Studer A. Nature 2023; 619: 506
- 22 Rossi-Ashton JA, Clarke AK, Unsworth WP, Taylor RJ. ACS Catal. 2020; 10: 7250
- 23 Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Chem. Soc. Rev. 2021; 50: 5349
- 24 9-Hydroxy-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-5-one-9-d 1 (2a); Typical Procedure In a N2-filled glove box, a 4-mL screw-capped vial was charged with dione 1a (0.1 mmol), PC1 (0.002 mmol, 2 mol%), (4-MeOC6H4)3P (0.12 mmol, 1.2 equiv). DMF (2.0 mL) and D2O (0.6 mL) were then added, and the mixture was stirred and irradiated in a blue-LED matrix at room temperature for 24 h. The solvent was evaporated in vacuo, and the product was isolated by column chromatography [silica gel, PE–EtOAc (5:1)] as a white solid; yield: 28.6 mg (81%; 0.2 mmol scale). 1H NMR (600 MHz, CDCl3): δ = 8.69 (dd, J = 5.0, 1.7 Hz, 1 H), 8.12 (dd, J = 7.6, 1.6 Hz, 1 H), 7.39 (dd, J = 7.9, 4.9 Hz, 1 H), 5.42 (br s, 1 H), 4.97 (dd, J = 10.7, 5.0 Hz, 1 H), 2.87–2.75 (m, 2 H), 2.51–2.45 (m, 1 H), 2.10–2.02 (m, 1 H), 1.86–1.70 (m, 2 H). 13C NMR (151 MHz, CDCl3): δ = 202.9, 160.1, 150.5, 137.5, 132.1, 123.1, 70.6, 41.6, 33.6, 19.3. HRMS (ESI+): m/z [M + Na]+ calcd for C10H11NNaO2: 200.0682; found: 200.0681.