Subscribe to RSS
DOI: 10.1055/a-2513-8549
Nickel-Catalyzed Cross-Electrophile [2+4] Annulation of Benzynes
This work was supported by the National Natural Science Foundation of China (22271267).

Abstract
Cross-electrophile coupling (XEC) reactions have emerged as powerful tools for C–C bond formation, whereas annulation employing arynes provides unique approaches to polycyclic arenes. Herein, we report a nickel-catalyzed cross-electrophile [2+4] annulation using benzynes and a 1-bromo-2-(2-chlorovinyl)arenes as C-2 and C-4 synthons, respectively. This proof-of-concept study not only provides a new method for synthesizing polysubstituted phenanthrenes, but also substantiates the feasibility of merging XEC reaction and aryne chemistry.
Key words
benzynes - [2+4] annulation - nickel catalysis - phenanthrenes - reductive cross-coupling - cross-electrophile couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2513-8549.
- Supporting Information
Publication History
Received: 12 October 2024
Accepted after revision: 09 January 2025
Accepted Manuscript online:
09 January 2025
Article published online:
18 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 1b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 1c Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 1d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 1e Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 1f Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 1g Richmond E, Moran J. Synthesis 2018; 50: 499
- 1h Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
- 1i Jin Y, Wang C. Synlett 2020; 31: 1843
- 1j Yi L, Ji T, Chen K.-Q, Chen X.-Y, Rueping M. CCS Chem. 2022; 4: 9
- 1k Pang X, Su P.-F, Shu X.-Z. Acc. Chem. Res. 2022; 55: 2491
- 1l Pan Q, Ping Y, Kong W. Acc. Chem. Res. 2023; 56: 515
- 1m Chen L.-M, Reisman SE. Acc. Chem. Res. 2024; 57: 751
- 2a Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
- 2b Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
- 2c Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
- 2d Wotal AC, Weix DJ. Org. Lett. 2012; 14: 1476
- 2e Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett. 2012; 14: 3044
- 2f Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
- 2g Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454
- 2h Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
- 2i Zhang P, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
- 2j Chen F, Chen K, Zhang Y, He Y, Wang Y.-M, Zhu S. J. Am. Chem. Soc. 2017; 139: 13929
- 2k Guan H, Zhang Q, Walsh PJ, Mao J. Angew. Chem. Int. Ed. 2020; 59: 5172
- 2l Zhang X, Wang J, Yang S.-D. ACS Catal. 2021; 11: 14008
- 2m Zhao W.-T, Shu W. Sci. Adv. 2023; 9: eadg9898
- 2n Zhou J, Wang D, Xu W, Hu Z, Xu T. J. Am. Chem. Soc. 2023; 145: 2081
- 2o Kim RS, Kgoadi LO, Hayes JC, Rainboth DP, Mudd CM, Yap GP. A, Watson DA. J. Am. Chem. Soc. 2024; 146: 17606
- 3a Yan C.-S, Peng Y, Xu X.-B, Wang Y.-W. Chem. Eur. J. 2012; 18: 6039
- 3b García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
- 3c Zhao X, Tu H.-Y, Guo L, Zhu S, Qing FL, Chu L. Nat. Commun. 2018; 9: 3488
- 3d Kuang Y, Wang X, Anthony D, Diao T. Chem. Commun. 2018; 54: 2558
- 3e Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
- 3f Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
- 3g Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
- 3h Wu X, Qu J, Chen Y. J. Am. Chem. Soc. 2020; 142: 15654
- 3i Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. J. Am. Chem. Soc. 2020; 142: 13515
- 3j Tu H.-Y, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
- 3k Ma Z, Xu W, Wu Y.-D, Zhou J.-S. J. Am. Chem. Soc. 2023; 145: 16464
- 3l Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen L.-A. Angew. Chem. Int. Ed. 2023; 62: e202218286
- 4a Durandetti M, Hardou L, Clément M, Maddaluno J. Chem. Commun. 2009; 4753
- 4b Shimkin KW, Montgomery J. J. Am. Chem. Soc. 2018; 140: 7074
- 4c Jiang Y, Pan J, Yang T, Zhao Y, Koh MJ. Chem 2021; 7: 993
- 4d Li H, Wang F, Zhu S, Chu L. Angew. Chem. Int. Ed. 2022; 61: e202116725
- 4e Zhan Y.-Z, Meng H, Shu W. Chem. Sci. 2022; 13: 4930
- 4f Li Q.-Z, Li Z.-H, Kang J.-C, Ding T.-M, Zhang S.-Y. Chem Catal. 2022; 2: 3185
- 4g Zeng M.-Q, Feng K.-X, Hu B.-L, Tu H.-Y, Zhang X.-G. Org. Lett. 2022; 24: 5386
- 5a Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
- 5b Correa A, Martin R. J. Am. Chem. Soc. 2014; 136: 7253
- 5c Wang L, Wang L, Li M, Chong Q, Meng F. J. Am. Chem. Soc. 2021; 143: 12755
- 5d Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Angew. Chem. Int. Ed. 2022; 61: e202213943
- 5e Xiao J, Wang M, Yin X, Yang S, Gu P, Lv X, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2023; 62: e202300743
- 5f Hu H, Wang Z. J. Am. Chem. Soc. 2023; 145: 20775
- 5g Wu X, Xia H, Gao C, Luan B, Wu L, Zhang C, Yang D, Hou L, Liu N, Xia T, Li H, Qu J, Chen Y. Nat. Chem. 2024; 16: 398
- 6a Gansäuer A, Bluhm H, Pierobon M. J. Am. Chem. Soc. 1998; 120: 12849
- 6b Zhao Y, Weix DJ. J. Am. Chem. Soc. 2014; 136: 48
- 6c Zhao Y, Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
- 6d Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
- 6e Zhang Y.-Q, Vogelsang E, Qu Z.-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
- 7a Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
- 7b Dubrovskiy AV, Markina NA, Larock RC. Org. Biomol. Chem. 2013; 11: 191
- 7c García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
- 7d Shi J, Li Y, Li Y. Chem. Soc. Rev. 2017; 46: 1707
- 7e Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 7f He J, Qiu D, Li Y. Acc. Chem. Res. 2020; 53: 508
- 7g Ghorai S, Lee D. Synlett 2020; 31: 750
- 7h Fluegel LL, Hoye TR. Chem. Rev. 2021; 121: 2413
- 7i Shi J, Li L, Li Y. Chem. Rev. 2021; 121: 3892
- 7j Sarmah M, Sharma A, Gogoi P. Org. Biomol. Chem. 2021; 19: 722
- 8a Dhokale RA, Mhaske SB. Synthesis 2018; 50: 1
- 8b Feng M, Jiang X. Synthesis 2017; 49: 4414
- 9a Hsieh J.-C, Cheng C.-H. Chem. Commun. 2005; 2459
- 9b Qiu Z, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 5729
- 9c Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 8648
- 9d Yoo W.-J, Nguyen TV. Q, Kobayashi S. Angew. Chem. Int. Ed. 2014; 53: 10213
- 9e Pawliczek M, Garve LK. B, Werz DB. Org. Lett. 2015; 17: 1716
- 9f Feng M, Tang B, Wang N, Xu H.-X, Jiang X. Angew. Chem. Int. Ed. 2015; 54: 14960
- 9g Pérez-Gómez M, García-López JA. Angew. Chem. Int. Ed. 2016; 55: 14389
- 9h Yoon H, Lossouarn A, Landau F, Lautens M. Org. Lett. 2016; 18: 6324
- 9i Peng X, Ma C, Tung C.-H, Xu Z. Org. Lett. 2016; 18: 4154
- 9j Niu S.-L, Hu J, He K, Chen Y.-C, Xiao Q. Org. Lett. 2019; 21: 4250
- 9k Shen Y, Xiang M, Wu S, Zhang Z, Li S, Xie C. Cell Rep. Phys. Sci. 2021; 2: 100615
- 9l Cheng X.-F, Yu T, Li Y, Wang N, Chen Z, Zhang G.-L, Tong L, Tang B. Org. Lett. 2022; 24: 2087
- 9m Pan C, Sun H, Du Y, Wang W, Xu L, Hu Y, Zhu M. Org. Lett. 2024; 26: 2387
- 10a Dong H, Wang C. J. Am. Chem. Soc. 2023; 145: 26747
- 10b Lin Z, Hu W, Zhang L, Wang C. ACS Catal. 2023; 13: 6795
- 10c Ding D, Zhang L, Wen H, Wang C. ACS Catal. 2023; 13: 744
- 10d Ding D, Yuan B, Wen H, Wang C. Cell Rep. Phys. Sci. 2023; 4: 101166
- 10e Wang R, Fan P, Wang C. ACS Catal. 2023; 13: 141
- 10f Wang R, Wang C. Chem. Sci. 2023; 14: 6449
- 10g Jin Y, Fan P, Wang C. CCS Chem. 2022; 4: 1510
- 10h Yuan B, Ding D, Wang C. ACS Catal. 2022; 12: 4261
- 10i Zhang C, Lin Z, Zhu Y, Wang C. J. Am. Chem. Soc. 2021; 143: 11602
- 10j Lin Z, Jin Y, Hu W, Wang C. Chem. Sci. 2021; 12: 6712
- 10k Jin Y, Wen H, Yang F, Ding D, Wang C. ACS Catal. 2021; 11: 13355
- 10l Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
- 10m Lan Y, Wang C. Commun. Chem. 2020; 3: 45
- 10n Ding D, Dong H, Wang C. iScience 2020; 23: 101017
- 10o Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
- 10p Jin Y, Wang C. Chem. Sci. 2019; 10: 1780
- 10q Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
- 11 Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 1211
- 12 Mao Y, Hu W, Wang C. ACS Catal. 2024; 22: 17039
- 13 2-Methoxy-9-(trifluoromethyl)phenanthrene (3aa); Typical Procedure A Schlenk tube equipped with a stirrer bar was charged with NiBr2·diglyme (7.0 mg, 0.02 mmol, 10 mol%), Zn (39 mg, 0.6 mmol, 3 equiv), and 3,4,7,8-tetramethyl-1,10-phenanthroline (L6) (5.7 mg, 0.024 mmol, 12 mol%). The tube was then evacuated and filled with nitrogen (three cycles), then anhyd NMP (1.0 mL), (Z)-1-bromo-2-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)benzene (1a) (56.8 mg, 0.2 mmol, 1.0 equiv), and 2-(trimethylsilyl)phenyl triflate (2a) (119.2 mg, 0.4 mmol, 2.0 equiv) were added successively under N2. The mixture was stirred at 40 °C for 20 h and then was quenched by addition of H2O. The aqueous phase was extracted with EtOAc (3 × 20 mL), and the combined organic phases were washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude materials were purified by column chromatography (silica gel, PE–EtOAc) to give a white solid; yield: 40.0 mg (72%). 1H NMR (500 MHz, CDCl3): δ = 8.64 (d, J = 8.3 Hz, 1 H), 8.58 (d, J = 9.0 Hz, 1 H), 8.21 (d, J = 8.4 Hz, 1 H), 8.11 (s, 1 H), 7.70 (ddd, J = 7.6, 6.9, 1.2 Hz, 1 H), 7.63 (ddd, J = 8.2, 6.9, 1.3 Hz, 1 H), 7.39 (dd, J = 9.0, 2.7 Hz, 1 H), 7.32 (d, J = 2.7 Hz, 1 H), 3.97 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 158.8, 131.1, 130.9, 127.4, 126.5 (q, J = 6.3 Hz), 126.5, 126.1, 125.8, 125.19 (q, J = 29.8 Hz), 125.16 (q, J = 2.7 Hz), 124.7, 124.3 (q, J = 273.5 Hz), 122.7, 119.6, 109.6, 55.5. 19F NMR (471 MHz, CDCl3): δ = –60.25 (s, 3 F). HRMS (ESI): m/z [M+] calcd for C16H11F3O: 276.0757; found: 276.0769.
For reviews on cross-electrophile coupling, see:
For general reviews on the use of arynes in organic synthesis, see:
For reviews on transition-metal-catalyzed reactions involving arynes, see:
For selected examples of transition-metal-catalyzed reactions involving arynes, see: