Subscribe to RSS
DOI: 10.1055/a-2529-5575
Cobalt-Catalyzed Hydrofunctionalizations of Alkenes with sp3-Hybridized Electrophiles
Financial support from the National Natural Science Foundation of China (22171127, 22371115, and 22373056), the Sichuan Science and Technology Program (2024ZYD0017), the Natural Science Foundation of Sichuan Province (25NSFSC2247), The Pearl River Talent Recruitment Program (2019QN01Y261), the Shenzhen Science and Technology Innovation Committee (JCYJ20240813094226034, JCYJ20230807093522044, JCYJ20220530114606013), the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Opening Project of Innovation Center for Chenguang High Performance Fluorine Material (SCFY2404), the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering (SUSE652A014), the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering (Y2024079, Y2024087) is sincerely acknowledged. This research was also supported by the SUSTech-NUS Joint Research Program.

Abstract
Saturated carbon centers connected with sp3 hybridized atoms are ubiquitous subunits in organic molecules, playing important roles in pharmaceuticals, agrochemicals, and materials science. Over the past decades, transition-metal-catalyzed cross-coupling reactions (e.g., Suzuki–Miyaura, Kumada, Negishi, Stille, and Buchwald–Hartwig amination) have enabled sp3–sp3 coupling using sp3 nucleophiles and sp3 electrophiles, and have evolved into extremely useful tools. However, the preformation and utilization of stoichiometric organometallic reagents, along with competitive β-H elimination of alkyl metallic intermediates, impose significant challenges and limitations for further applications. Recent advances in metal-catalyzed hydrofunctionalization of alkenes present a promising alternative by utilizing alkenes as latent alkyl nucleophiles in the presence of a silane, circumventing the use of stoichiometric amounts of sp3-hybridized metallic reagents. Over the years, cobalt-catalyzed hydrofunctionalization of alkenes with sp3-hybridized electrophiles has emerged as a compelling approach for sp3–sp3 coupling to forge carbon–carbon and carbon–heteroatom bonds, demonstrating broad functional group compatibility and enhanced regio- and enantioselectivity. This account highlights the advances in cobalt-catalyzed hydrofunctionalizations of alkenes with sp3-hybridized electrophiles to form sp3–sp3 bonds, alongside a discussion on future research avenues on addressing the existing obstacles in this field.
1 Introduction
2 Cobalt-Catalyzed Hydroalkylation of Alkenes
3 Cobalt-Catalyzed Hydroamination of Alkenes
4 Cobalt-Catalyzed Hydrothiolation of Alkenes
5 Summary and Outlook
Key words
cobalt catalysis - hydrofunctionalization - alkenes - sp3-hybridized electrophiles - sp3–sp3 cross-couplingPublication History
Received: 30 December 2024
Accepted after revision: 30 January 2025
Accepted Manuscript online:
30 January 2025
Article published online:
18 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Delost MD, Smith DT, Anderson BJ, Njardarson JT. J. Med. Chem. 2018; 61: 10996
- 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1c Choi J, Fu GC. Science 2017; 356: 152
- 1d Geist E, Kirschning A, Schmidt T. Nat. Prod. Rep. 2014; 31: 441
- 1e Feng M, Tang B, Liang H.-S, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 1f Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
- 1g Chen C. Nat. Rev. Chem. 2018; 2: 6
- 1h Lellouche JP, Pomerantz Z, Ghosh S. Tetrahedron Lett. 2011; 52: 6903
- 1i Cook TP, Zhang YR, Stang PJ. Chem. Rev. 2013; 113: 734
- 1j Mahmoud LM, dos Reis RA, Chen X.-F, Ting VP, Nayak SJ. ACS Omega 2022; 7: 45910
- 2a Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
- 2b Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 2c Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
- 2d Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
- 2e Chen C.-Y, Peters JC, Fu GC. Nature 2021; 596: 250
- 2f Caiger L, Zhao H.-B, Constantin T, Douglas JJ, Leonori D. ACS Catal. 2023; 13: 4985
- 2g Chen J.-J, Fang J.-H, Du X.-Y, Zhang J.-Y, Bian J.-Q, Wang F.-L, Cheng L, Liu W.-L, Liu J.-R, Dong X.-Y, Li Z.-L, Gu Q.-S, Dong Q, Liu X.-Y. Nature 2023; 618: 294
- 2h Tian Y, Li X.-T, Liu J.-R, Cheng J, Gao A, Yang N.-Y, Li Z, Guo K.-X, Zhang W, Wen H.-T, Li Z.-L, Gu Q.-S, Hong X, Liu X.-Y. Nat. Chem. 2024; 16: 466
- 2i Luo H, Yang Y.-P, Fu Y.-K, Yu F.-N, Gao L, Ma Y.-P, Li Y, Wu K.-F, Lin L.-Q. Nat. Commun. 2024; 15: 5647
- 3a Netherton MR, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 3910
- 3b Zhou J, Fu GC. J. Am. Chem. Soc. 2003; 125: 12527
- 3c Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
- 3d Cahiez G, Chaboche C, Duplais C, Giulliani A, Moyeux A. Adv. Synth. Catal. 2008; 350: 1484
- 3e Huo H, Gorsline BJ, Fu GC. Science 2020; 367: 559
- 4a Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
- 4b Wang X.-X, Lu X, Li Y, Wang J.-W, Fu Y. Sci. China Chem. 2020; 63: 1586
- 4c Liu YR, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
- 4d Bera S, Mao R.-Z, Hu X.-L. Nat. Chem. 2021; 13: 270
- 4e Li Y, Liu D.-G, Zhang J.-Y, Lu X, Fu Y. J. Am. Chem. Soc. 2022; 144: 13961
- 4f Wang Y, He Y, Zhu S. Acc. Chem. Res. 2022; 55: 3519
- 4g He Y, Chen J, Jiang X, Zhu S. Chin. J. Chem. 2022; 40: 651
- 4h Yang P.-F, Shu W. Chem Catal. 2023; 3: 100508
- 4i Zhang G, Zhang Q. Chem Catal. 2023; 3: 100526
- 4j Miao H.-R, Guan M.-H, Xiong T, Zhang G, Zhang Q. Angew. Chem. Int. Ed. 2023; 62: e202213913
- 4k Liu B.-X, Liu Q. ChemCatChem 2024; 16: e202301188
- 5a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 5b Hoffmann RW. Chem. Soc. Rev. 2016; 45: 577
- 6a Zhu S.-L, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 6b Miki Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 10803
- 6c Yang Y, Zhu S.-L, Niu D, Liu P, Buchwald SL. Science 2015; 349: 62
- 6d Nishikawa D, Hirano K, Miura M. J. Am. Chem. Soc. 2015; 137: 15620
- 6e Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
- 6f Xi Y.-M, Butcher TW, Zhang J, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 776
- 6g Zhang G, Liang Y.-J, Qin T, Xiong T, Liu S.-Y, Guan W, Zhang Q. CCS Chem. 2021; 3: 1737
- 6h Liang Y.-J, Sun M.-J, Zhang G, Yin J.-J, Guan W, Xiong T, Zhang Q. Chem Catal. 2022; 2: 2379
- 6i Yang Z.-P, Du Q.-W, Jiang Y.-X, Wang J. CCS Chem. 2022; 4: 1901
- 7a Wang Z.-B, Yin H.-L, Fu GC. Nature 2018; 563: 379
- 7b Qian D.-Y, Bera S, Hu X.-L. J. Am. Chem. Soc. 2021; 143: 1959
- 7c Wang J.-W, Li Y, Nie W, Chang Z, Yu Z.-A, Zhao Y.-F, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
- 7d Bera S, Mao R.-Z, Hu X.-L. Nat. Chem. 2021; 13: 270
- 7e Sun X.-Y, Yao B.-Y, Xuan B, Xiao L.-J, Zhou Q.-L. Chem. Catal. 2022; 2: 3140
- 7f Yang P.-F, Liang J.-X, Zhao H.-T, Shu W. ACS Catal. 2022; 12: 9638
- 7g Lee C, Kang H.-J, Seo H, Hong S. J. Am. Chem. Soc. 2022; 144: 9091
- 7h Wang J.-W, Li Z, Liu D, Zhang J.-Y, Lu X, Fu Y. J. Am. Chem. Soc. 2023; 145: 10411
- 7i Wang Y, He Y.-L, Zhu S.-L. Acc. Chem. Res. 2023; 56: 3475
- 7j Song T, Luo Y.-C, Wang K.-Y, Wang B.-Y, Yuan Q.-J, Zhang W.-B. ACS Catal. 2023; 13: 4409
- 7k Xie L, Liang J.-M, Bai H.-H, Liu X.-Y, Meng X, Xu Y.-Q, Cao Z.-Y, Wang C. ACS Catal. 2023; 13: 10041
- 7l Hao Y.-T, Wang X.-L, Wu Y.-M, Song L.-L, Zhang K, Cai L.-C. ACS Catal. 2023; 13: 15633
- 8a He Y, Cai Y, Zhu S.-L. J. Am. Chem. Soc. 2017; 139: 1061
- 8b Zhou F, Zhang Y, Zhu S.-L. Angew. Chem. Int. Ed. 2018; 57: 4058
- 8c Sun S.-Z, Börjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
- 8d Zhang Y, Han B, Zhu S.-L. Angew. Chem. Int. Ed. 2019; 58: 13860
- 8e Qian D.-Y, Hu X.-L. Angew. Chem. Int. Ed. 2019; 58: 18519
- 8f Liu J.-D, Gong H.-G, Zhu S.-L. Angew. Chem. Int. Ed. 2021; 60: 4060
- 9a Li Y, Lu X, Fu Y. CCS Chem. 2024; 6: 1130
- 9b Li Y, Nie W, Chang Z, Wang J.-W, Lu X, Fu Y. Nat. Catal. 2021; 4: 901
- 9c Yang P.-F, Shu W. Angew. Chem. Int. Ed. 2022; 61: e202208018
- 9d Wang X.-H, Xue J, Rong Z.-Q. J. Am. Chem. Soc. 2023; 145: 15456
- 10 Zhang Z.-L, Li Z, Xu Y.-T, Yu L, Kuang J, Li Y, Wang J.-W, Tian C.-L, Lu X, Fu Y. Angew. Chem. Int. Ed. 2023; 62: e202306381
- 11 Li Z, Liu B.-X, Yao C.-Y, Gao G.-W, Zhang J.-Y, Tong Y.-Z, Zhou J.-X, Sun H.-K, Liu Q, Lu X, Fu Y. J. Am. Chem. Soc. 2024; 146: 3405
- 12 Zhao L.-Z, Liu F.-P, Zhuang Y, Shen M.-Y, Xue J, Wang X.-H, Zhang Y.-T, Rong Z.-Q. Chem. Sci. 2024; 15: 8888
- 13 Shen M.-Y, Niu C.-Y, Wang X.-H, Huang J.-B, Zhao Z, Ni S.-F, Rong Z.-Q. JACS Au 2024; 4: 2312
- 14 Liu B.-X, Liu D.-G, Niu C, Xia Y, Lu X, Fu Y, Liu Q. Org. Chem. Front. 2024; 11: 6617
- 15 Liu B.-X, Liu D.-G, Rong X.-L, Lu X, Fu Y, Liu Q. Angew. Chem. Int. Ed. 2023; 62: e202218544
- 16 Zeng M.-J, Yu C.-Y, Wang Y.-B, Wang J.-J, Wang J, Liu H. Angew. Chem. Int. Ed. 2023; 62: e202300424
- 17 Ren J.-T, Sun Z, Zhao S, Huang J.-Y, Wang Y.-K, Zhang C, Huang J.-H, Zhang C.-H, Zhang R.-P, Zhang Z.-H, Ji X, Shao Z.-H. Nat. Commun. 2024; 15: 3783
- 18 Li Y, Liu D.-G, Hu X, Zhang J.-Y, Zhu Q.-W, Men B, Gao G.-W, Chen P.-W, Tong Y.-Z, Chang Z, Li Z, Lu X, Fu Y. Nat. Synth. 2024; 3: 1134
- 19 Qin T, Lv G.-W, Meng Q, Zhang G, Xiong T, Zhang Q. Angew. Chem. Int. Ed. 2021; 60: 25949
- 20 Yang D.-D, Huang H, Zhang H, Yin L.-M, Song M.-P, Niu J.-L. ACS Catal. 2021; 11: 6602
- 21 Zhang X.-G, He Z.-X, Guo P, Chen Z, Ye K.-Y. Org. Lett. 2022; 24: 22
- 22 Li X.-R, Zhang R.-J, Xiao Y.-H, Tong Q.-X, Zhong J.-J. Org. Chem. Front. 2024; 11: 646
For selected examples, see: