Subscribe to RSS
DOI: 10.1055/a-2532-6077
One-Pot Pyridinium-Ylide-Assisted Tandem Reaction for the Diastereoselective Synthesis of trans-2,3-Dihydrofuran–Chromone Conjugates
S.P.D. thanks the University Grant Commission (UGC), for his fellowship (SRF). We also are grateful to CAS-V (UGC), Department of Chemistry, University of Calcutta, for funding as a departmental project.

Abstract
An efficient procedure for the preparation of novel fused 2,3-dihydrofuran–chromone conjugates was developed with the assistance of a pyridinium ylide generated in situ. Pyridine, a 3-formylchromone, a cyclohexane-1,3-dione, and a phenacyl bromide, with triethylamine acting as a catalyst, underwent a sequential, one-pot, two-step, tandem reaction that proceeded smoothly in aqueous media. 1H and 13C NMR spectroscopy and single-crystal analysis confirmed the diastereoselective synthesis of trans-2,3-dihydrofurans.
Key words
metal-catalyst-free reaction - aqueous medium - dihydrofuran–chromone conjugates - gram-scale preparation - pyridinium ylides - one-pot reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2532-6077.
- Supporting Information
- CIF File
Publication History
Received: 27 December 2024
Accepted after revision: 04 February 2025
Accepted Manuscript online:
04 February 2025
Article published online:
17 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Machado NF. L, Marques MP. M. Curr. Bioact. Compd. 2010; 6: 76
- 2 Ostrowska K, Grzeszczuk D, Maciejewska D, Młynarczuk-Biały I, Czajkowska A, Sztokfisz A, Dobrzycki Ł, Kruszewska H. Monatsh. Chem. 2016; 147: 1615
- 3 Ellis GP. In Chromenes, Chromanones, and Chromones . Ellis GP. Wiley; New York: 2009. 1
- 4 Gábor M. Prog. Clin. Biol. Res. 1986; 213: 471
- 5 Rival Y, Grassy G, Taudou A, Ecalle R. Eur. J. Med. Chem. 1991; 26: 13
- 6 Teimouri MB, Akbari-Moghaddam P, Golbaghi G. ACS Comb. Sci. 2011; 13: 659
- 7 Yagi A, Kabash A, Okamura N, Haraguchi H, Moustafa SM, Khalifa TI. Planta Med. 2002; 68: 957
- 8 Gonzalez AG, Darias V, Estevez E, Vivas JM. Planta Med. 1983; 47: 56
- 9 Teimouri MB, Asnaashari B, Moayedi M, Naderi S. Synlett 2015; 101
- 10 Teimouri MB, Mashayekhi F, Alishaei E. J. Iran. Chem. Soc. 2016; 13: 583
- 11 Mazzei M, Balbi A, Roma G, Di Braccio M, Leoncini G, Buzzi E, Maresca M. Eur. J. Med. Chem. 1988; 23: 237
- 12a Zghab I, Trimeche B, Mansour MB, Hassine M, Touboul D, Jannet HB. Arabian J. Chem. 2017; 10: S2651
- 12b Dey S, Lo H.-J, Wong C.-H. J. Am. Chem. Soc. 2019; 141: 10309
- 12c Dey S, Lo H.-J, Wong C.-H. Org. Lett. 2020; 22: 4638
- 13 Teimouri MB, Zolfaghari F, Naderi S. Tetrahedron 2017; 73: 262
- 14 Teimouri MB, Eskandari M. J. Chem. Res. 2011; 35: 500
- 15 Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
- 16a Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941
- 16b Tawfik HA, Ewies EF, El-Hamouly WS. Int. J. Res. Pharm. Chem. 2014; 4: 1046
- 16c Gobbi S, Hu Q, Zimmer C, Engel M, Belluti F, Rampa A, Hartmann RW, Bisi A. J. Med. Chem 2016; 59: 2468
- 16d Carradori S, Silvestri R. J. Med. Chem 2015; 58: 6717
- 16e Reis J, Manzella N, Cagide F, Mialet-Perez J, Uriarte E, Parini A, Borges F, Binda C. J. Med. Chem. 2018; 61: 4203
- 17 Gamal-Eldeen AM, Djemgou PC, Tchuendem M, Ngadjui BT, Tane P, Toshifumi H. Z. Naturforsch., C 2007; 62: 331
- 18 Gautam R, Jachak SM, Kumar V, Mohan CG. Bioorg. Med. Chem. Lett. 2011; 21: 1612
- 19 Subbareddy CV, Sumathi S. New J. Chem. 2017; 41: 9388
- 20 Yuan R, Huang L, Du L.-J, Feng J.-F, Li J, Luo Y.-Y, Xu Q.-M, Yang S, Gao H, Feng Y.-L. Pharmacol. Res. 2019; 142: 102
- 21 Fukuda T, Shimoyama K, Nagamitsu T, Tomoda H. J. Antibiot. 2014; 67: 445
- 22 Li Y, Hale KJ. Org. Lett. 2007; 9: 1267
- 23 Jung J.-K, Johnson BR, Duong T, Decaire M, Gharbaoui T, Boatman PD, Sage CR, Chen R, Richman JG, Connolly DT, Semple G. J. Med. Chem. 2007; 50: 1445
- 24 Zheng S.-L, Yu W.-Y, Xu M.-X, Che C.-M. Tetrahedron Lett. 2003; 44: 1445
- 25 Clive DL. J, Stoffman EJ. L. Org. Biomol. Chem. 2008; 6: 1831
- 27a Cheng C.-W, Zhou Y, Pan W.-H, Dey S, Wu C.-Y, Hsu W.-L, Wong C. Nat. Commun. 2018; 9: 5202
- 27b Bagley MC, Dale JW, Bower J. Chem. Commun. 2002; 1682
- 28 Akritopoulou-Zanze I. Curr. Opin. Chem. Biol. 2008; 12: 324
- 29 Ivachtchenko AV, Ivanenkov YA, Kysil VM, Krasavin MY, Ilyin AP. Russ. Chem. Rev. 2010; 79: 787
- 30 Teimouri MB, Mansouri F. J. Chem. Res. 2010; 34: 330
- 31 Cano PA, Islas-Jácome A, González-Marrero J, Yépez-Mulia L, Calzada F, Gámez-Montaño R. Bioorg. Med. Chem. 2014; 22: 1370
- 32 Teimouri MB, Bazhrang R, Eslamimanesh V, Nouri A. Tetrahedron 2006; 62: 3016
- 33 Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
- 34 Shaabani A, Maleki A, Rezayan AH, Sarvary A. Mol. Diversity 2011; 15: 41
- 35 Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 36 Chuang C.-P, Tsai A.-I. Synthesis 2006; 675
- 37 Worgull D, Öhler L, Strache JP, Friedrichs T, Ullrich P. Eur. J. Org. Chem. 2017; 6077
- 38 Das S, Basu S, Halder S, Mukhopadhyay C. Tetrahedron 2024; 160: 134041
- 39 Nousheen A, Chandrakanth M, Sagar BK, Somarapu VL. J. Mol. Struct. 2022; 1261: 132899
- 40 CCDC 2403331 and 2403329 contain the supplementary crystallographic data for compounds 4b and 4w. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 41 2-[(2S*,3S*)-2-Benzoyl-6,6-dimethyl-4-oxo-2,3,4,5,6,7-hexahydro-1-benzofuran-3-yl]-4H-chromen-4-one (4a); Typical Procedure 3-Formylchromone (1a; 1 mmol, 0.174 g), phenacyl bromide (2a; 1 mmol, 0.199 g), dimedone (3a; 0.140 g, 1 mmol), and pyridine (0.118 g, 1.5 mmol) were added to H2O (2 mL) in a 10 mL round-bottomed flask equipped with a reflux condenser. The mixture was refluxed in the open atmosphere at 100 °C (oil bath) for 2 h. Et3N (1 mmol, 0.101g) was then added, and the resulting mixture was refluxed for another 3 h until the reaction was complete (TLC). The resulting mixture was then cooled to r.t. and the crude product was extracted with EtOAc (2 × 10 mL) using a separatory funnel. The combined organic layer was washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel (100–200 mesh), PE–EtOAc] to give a white solid; yield: 380 mg (91%); mp 200–202 °C; Rf = 0.4 (20% EtOAc–PE). 1H NMR (300 MHz, CDCl3): δ = 8.19–8.16 (m, 1 H), 8.01–7.98 (m, 2 H), 7.85 (s, 1 H), 7.70–7.59 (m, 2 H), 7.51–7.37 (m, 4 H), 6.10 (d, J = 5.4 Hz, 1 H), 4.56 (d, J = 5.7 Hz, 1 H), 2.49 (ABq, J = 16.8 Hz, 2 H), 2.23 (s, 2 H), 1.15 (s, 3 H), 1.12 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 194.5, 193.0, 177.6, 177.4, 156.5, 154.5, 134.3, 134.2, 133.9, 129.5, 128.9, 125.8, 125.4, 124.4, 121.7, 118.3, 111.2, 87.6, 51.4, 41.4, 37.9, 34.4, 29.2, 28.5. HRMS (ESI/TOF-Q): m/z [M + H]+ calcd C26H23O5: 415.1545; found: 415.1540